Skip to main content
Log in

Prescription of Gauss curvature using optimal mass transport

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we give a new proof of a theorem by Alexandrov on the Gauss curvature prescription of Euclidean convex sets. This proof is based on the duality theory of convex sets and on optimal mass transport. A noteworthy property of this proof is that it does not rely neither on the theory of convex polyhedra nor on P.D.E. methods (which appeared in all the previous proofs of this result).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.D.: Existence and uniqueness of a convex surface with a given integral curvature. C. R. (Dokl.) Acad. Sci. URSS (NS) 35, 131–134 (1942) (English)

  2. Alexandrov, A.D.: Convex Polyhedra, Springer Monographs in Mathematics. Springer, Berlin (2005) Translated from the 1950 Russian edition by Dairbekov, N.S. Kutateladze, S.S., Sossinsky, A.B., With comments and bibliography by Zalgaller, V.A., appendices by Shor, L.A., Volkov Y.A

  3. Bakelman, I.J.: Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer, Berlin, With an obituary for the author by William Rundell, Edited by Taliaferro, Steven D. (1994)

  4. Barbot, T., Béguin, F., Zeghib, A.: Prescribing gauss curvature of surfaces in 3-dimensional spacetimes, application to the minkowski problem in the minkowski space. Ann. Inst. Fourier (To appear). http://arxiv.org/abs/0804.1053v1

  5. Bertrand, J.: Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete Contin. Dyn. Syst. 34(4), 1269–1284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guan, P., Lin, C., Ma, X.-N.: The existence of convex body with prescribed curvature measures. Int. Math. Res. Not. IMRN 11, 1947–1975 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Iskhakov, I.: On Hyperbolic Surfaces Tesselations and Equivariant Spacelike Convex Polyhedra, PhD thesis, Ohio State University (2000)

  9. Kantorovitch, L.: On the translocation of masses. C. R. (Dokl.) Acad. Sci. URSS (NS) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  10. Labourie, F., Schlenker, J.-M.: Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante. Math. Ann. 316(3), 465–483 (2000)

    Article  MathSciNet  Google Scholar 

  11. McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oliker, V.: Embedding \({{ S}}^n\) into \({{ R}}^{n+1}\) with given integral Gauss curvature and optimal mass transport on \({{ S}}^n\). Adv. Math. 213(2), 600–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Oliker, V.I.: The Gauss curvature and Minkowskiproblems in space forms, Recent developments in geometry (LosAngeles, 1987) Contemp. Math., vol. 101, Am. Math. Soc., Providence, RI, pp. 107–123 (1989)

  15. O’Neill, B.: Semi-Riemannian Geometry, Pure and Applied Mathematics, vol. 103, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, With applications to relativity (1983)

  16. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces, American Mathematical Society, Providence, R.I., Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35 (1973)

  17. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics, vol. 149, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  18. Rockafellar RT (1970) Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton

  19. Rockafellar, R. T., Wets, R. J.-B.: Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer, Berlin (1998)

  20. Rüschendorf, L.: On \(c\)-optimal random variables. Stat. Probab. Lett. 27(3), 267–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schneider, R.: Convex bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  22. Smith, C.S., Knott, M.: Note on the optimal transportation of distributions. J. Optim. Theory Appl. 52(2), 323–329 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Treibergs, A.: Bounds for hyperspheres of prescribed Gaussian curvature. J. Differ. Geom. 31(3), 913–926 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  25. Villani, C.: Optimal Transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer, Berlin, Old and new (2009)

Download references

Acknowledgments

The author thanks the referee for useful suggestions, especially to consider the set \({\mathcal {F}}_0\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Bertrand.

Appendix

Appendix

In this appendix, we prove the following result

Lemma 4.10

Let \(\mu \) be a finite Borel measure on the unit sphere \({\mathbb {S}}^m\) endowed with its canonical distance d. Suppose that \(\mu \) is absolutely continuous with respect to the standard uniform measure on \({\mathbb {S}}^m\) and \(\mu ({\mathbb {S}}^m)\) is a positive rational number. Then for any \(\alpha >0\), there exists a finite partition \((P_i)_{1\le i\le K}\) of \({{\mathbb {S}}}^m\) (depending on \(\alpha \)) such that for all i, \(\mu (P_i)>0\) is a rational number and \(diam (P_i) < \alpha \).

Remark 4.11

When \(\mu \) is the uniform probability measure \(\sigma \), the proof below together with the expression of \(\sigma \) in polar coordinates guarantee that we can further require \(\forall i, \;\sigma (P_i)= 1/M\), being M a sufficiently large integer.

Proof

The proof is by induction on the dimension m. For \(m=1\), fix a number \(\alpha _1>0\). Then, partition \({\mathbb {S}}^1\) into finitely many left-open, right-closed segments \((I_j)_{1\le j\le K_1}\) whose length \(l(I_j)\) satisfies \( l(I_j)<\alpha _1\) and \(\mu (I_j) \in {{\mathbb {Q}}}\) (we use that \(s \mapsto \mu ((a,s])\) is continuous); \(\mu (I_{K_1}) \in {{\mathbb {Q}}}\) is guaranteed by \(\mu ({\mathbb {S}}^1)\in {{\mathbb {Q}}}\). For \(m=2\), fix a point \(N\in {\mathbb {S}}^2\) and \(\alpha _2>0\). Consider a partition \((C_i)_{1 \le i \le K_2}\) where \(C_1\) is the closed ball with radius \(R_1\) and center N, \(C_i= \{z\in {\mathbb {S}}^2; R_{i-1} < d(N,z) \le R_i\}\) for \( i \in \{2,\ldots ,K_2-1\}\) and \(C_{K_2}\) is the closed ball with radius \(\pi -R_{K_2}\) and center \(-N\). We require that the \((R_i)\) satisfy:

$$\begin{aligned} \alpha _2/2 < R_1< \alpha _2, \quad \alpha _2/2 < R_i-R_{i-1} < \alpha _2, \quad \pi -R_{K_2} < \alpha _2 \end{aligned}$$

and \(\mu (C_i)\in {{\mathbb {Q}}}\). Let us set p the projection onto the equator relative to N. Note that the measures are absolutely continuous with respect to the uniform measure on the circle thus, applying the case \(m=1\) to all the measures , we get a partition \((P_i)_{1\le i\le K}\) of \({\mathbb {S}}^2\) (namely \((C_i \cap p^{-1}(I_j^i))_{i,j}\), being \((I_j^i)_j\) the partition corresponding to ) such that \(\mu (P_i) \in {{\mathbb {Q}}}\). Moreover, the expression of the spherical distance in polar coordinates implies that the diameter of any \(P_i\) is smaller than \(\alpha \) provided \(\alpha _1\) and \(\alpha _2\) are sufficiently small. The higher dimensional case easily follows from the arguments used for \(m=2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, J. Prescription of Gauss curvature using optimal mass transport. Geom Dedicata 183, 81–99 (2016). https://doi.org/10.1007/s10711-016-0147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-016-0147-3

Keywords

Mathematics Subject Classification (2010)

Navigation