Skip to main content
Log in

Line arrangements with the maximal number of triple points

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The purpose of this note is to study configurations of lines in projective planes over arbitrary fields having the maximal number of intersection points where three lines meet. We give precise conditions on ground fields \(\mathbb F\) over which such extremal configurations exist. We show that there does not exist a field admitting a configuration of 11 lines with 17 triple points, even though such a configuration is allowed combinatorially. Finally, we present an infinite series of configurations which have a high number of triple intersection points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amram, M., Cohen, M., Teicher, M., Ye, F.: Moduli spaces of ten-line arrangements with double and triple points, arXiv:1306.6105

  2. Amram, M., Teicher, M., Ye, F.: Moduli spaces of arrangements of 10 projective lines with quadruple points. Adv. Appl. Math. 51, 392–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnol’d, V.I.: Simple singularities of curves. Tr. Mat. Inst. Steklova 226, 27–35 (1999)

    Google Scholar 

  4. Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement Mathématique. Revue Internationale. 2e Série 55, 235–273 (2009)

  5. Bauer, Th., Di Rocco, S., Harbourne, B., Huizenga, J., Lundman, A., Pokora, P., Szemberg, T.: Bounded negativity and arrangements of lines. Int. Math. Res. Not. (2014). doi:10.1093/imrn/RNU236

  6. Bokowski, J., Pilaud, V.: Enumerating topological \((n_k)\)-configurations. Comput. Geom. 47(2, part A), 175–186 (2014)

  7. Bokowski, J., Schewe, L.: On the finite set of missing geometric configurations \((n_4)\). Comput. Geom. 46, 532–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burr, S.A., Grünbaum, B., Sloane, N.J.A.: The orchard problem. Geom. Dedicata 2, 397–424 (1974)

    Article  MATH  Google Scholar 

  9. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011)

  10. Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to the \(I^{(3)}\subset I^2\) containment. J. Algebra 393, 24–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geramita, A.V., Harbourne, B., Migliore, J.: Star configurations in \({\mathbb{P}}^n\). J. Algebra 376, 279–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glynn, D.: On the Anti-Pappian \(10_3\) and its construction. Geom. Dedicata 77, 71–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Green, B., Tao, T.: On sets defining few ordinary lines. Discrete Comput. Geom. 50, 409–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grünbaum, B.: Configurations of Points and Lines. Graduate Studies in Mathematics, vol. 103. American Mathematical Society, Providence (2009)

    Google Scholar 

  15. Harbourne, B., Szemberg, T.: Arrangements of lines. Snapshots of modern mathematics from Oberwolfach 11/2014. doi:10.14760/SNAP-2014-011-EN

  16. Kirkman, T.P.: On a problem in combinations. Camb. Dublin Math. J. 2, 191–204 (1847)

    Google Scholar 

  17. Langer, A.: Logarithmic orbifold Euler numbers of surfaces with applications. Proc. Lond. Math. Soc. 86(3), 358–396 (2003)

    Article  MATH  Google Scholar 

  18. Lauffer, R.: Die nichtkonstruierbare Konfiguration \((10_3)\). Math. Nachr. 11, 303–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ran, Z.: On nodal plane curves. Invent. Math. 86, 529–534 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schönheim, J.: On maximal systems of k-tuples. Stud. Sci. Math. Hung. 1, 363–368 (1966)

    MATH  Google Scholar 

  21. Sturmfels, B.: Computational algebraic geometry of projective configurations. Invariant-theoretic algorithms in geometry (Minneapolis, MN, 1987). J. Symb. Comput. 11, 595–618 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Teitler, Z.: Multiplier ideals of general line arrangements in \({\mathbb{C}}^3\). Comm. Algebra 35, 1902–1913 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This notes originated in a workshop on Arrangements of Lines held in Lanckorona in April 2014. We thank the Jagiellonian University in Cracow for financial support. We thank also Brian Harbourne and Witold Jarnicki for helpful discussions. We are grateful to the referee for remarks which led to considerable improvements of the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Szemberg.

Additional information

M.D., T.S., J.S. and H.TG were partially supported by the National Science Centre, Poland, Grant 2014/15/B/ST1/02197.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumnicki, M., Farnik, Ł., Główka, A. et al. Line arrangements with the maximal number of triple points. Geom Dedicata 180, 69–83 (2016). https://doi.org/10.1007/s10711-015-0091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0091-7

Keywords

Mathematics Subject Classification (2000)

Navigation