Skip to main content
Log in

On the existence of a weak Zariski decomposition on projectivized vector bundles

  • Original paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A pseudoeffective divisor is said to have a weak Zariski decomposition if it can be, up to a birational transformation, numerically written as the sum of a nef and an effective divisor. In this paper we consider the problem of the existence of a weak Zariski decomposition for each pseudoeffective divisor on a variety \(X= \mathbb {P}(\fancyscript{E})\), where \(\fancyscript{E}\) is a vector bundle on a smooth complex projective variety \(Z\) of Picard number one. We prove the existence of such a decomposition in a number of meaningful situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Banica, C., Manolache, N.: Rank 2 stable vector bundles on \({\mathbb{P}}^3({\mathbb{C}})\) with chern classes \(c_1=-1,\;c_2=4\). Math. Z. 190(3), 315–339 (1985). doi:10.1007/BF01215133

    Article  MATH  MathSciNet  Google Scholar 

  2. Birkar, C.: On existence of log minimal models and weak Zariski decompositions. Math. Ann. 354(2), 787–799 (2012). doi:10.1007/s00208-011-0756-y

    Article  MATH  MathSciNet  Google Scholar 

  3. Fujita, T.: On Zariski problem. Proc. Japan Acad. Ser. A Math. Sci. 55(3), 106–110 (1979). URL http://projecteuclid.org/getRecord?id=euclid.pja/1195517399

  4. Fulger, M.: The cones of effective cycles on projective bundles over curves. Math. Z. 269(1–2), 449–459 (2011). doi:10.1007/s00209-010-0744-z

    Article  MATH  MathSciNet  Google Scholar 

  5. Fulton, W.: Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 2, 2 edn. Springer (1998)

  6. González, J.L.: Projectivized rank two toric vector bundles are Mori dream spaces. Comm. Algebra 40(4), 1456–1465 (2012). doi:10.1080/00927872.2011.551900

    Article  MATH  MathSciNet  Google Scholar 

  7. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

    Google Scholar 

  8. Hartshorne, R.: Stable vector bundles of rank 2 on \(\mathbb{P}^3\). Math. Ann. 238, 229–280 (1978). doi:10.1007/BF01420250

    Article  MATH  MathSciNet  Google Scholar 

  9. Hartshorne, R.: Stable reflexive sheaves. Math. Ann. 254(2), 121–176 (1980). doi:10.1007/BF01467074

    Article  MATH  MathSciNet  Google Scholar 

  10. Hu, Y., Keel, S.: Mori dream spaces and GIT. Mich. Math. J. 48, 331–348 (2000). doi:10.1307/mmj/1030132722. Dedicated to William Fulton on the occasion of his 60th birthday

    Article  MATH  MathSciNet  Google Scholar 

  11. Kollár, J.: Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32. Springer, Berlin (1996). doi:10.1007/978-3-662-03276-3

  12. Lazarsfeld, R.: Positivity in algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, 49. Springer, Berlin (2004)

  13. Lesieutre, J.: The diminished base locus is not always closed. Compos. Math. 150(10), 1729–1741 (2014). doi:10.1112/S0010437X14007544

    Article  MATH  MathSciNet  Google Scholar 

  14. Mehta, V.B., Ramanathan, A.: Semistable sheaves on projective varieties and their restriction to curves. Math. Ann. 258(3), 213–224 (1981/1982). doi:10.1007/BF01450677

  15. Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. In: Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, pp. 449–476. North-Holland, Amsterdam (1987)

  16. Muñoz, R., Occhetta, G., Solá Conde, L.E.: On rank 2 vector bundles on Fano manifolds. Kyoto J. Math. 54(1), 167–197 (2014). doi:10.1215/21562261-2400310

    Article  MATH  MathSciNet  Google Scholar 

  17. Nakayama, N.: Zariski-decomposition and Abundance, MSJ Memoirs, vol. 14. Mathematical Society of Japan, Tokyo (2004)

    Google Scholar 

  18. Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3. Birkhäuser Boston, Mass (1980)

  19. Prokhorov, Y.G.: On the Zariski decomposition problem. Tr. Mat. Inst. Steklova 240(Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry), 43–72 (2003)

  20. Schwarzenberger, R.L.E.: Vector bundles on the projective plane. Proc. London Math. Soc. 3(11), 623–640 (1961)

    Article  MathSciNet  Google Scholar 

  21. Vallès, J.: Fibrés de Schwarzenberger et coniques de droites sauteuses. Bull. Soc. Math. France 128(3), 433–449 (2000)

    MATH  MathSciNet  Google Scholar 

  22. Zariski, O.: The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 2(76), 560–615 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Muñoz.

Additional information

First and third authors supported by the Spanish project MTM2012-32670. Third author supported by Polish National Science Center project 2013/08/A/ST1/00804.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, R., Di Sciullo, F. & Solá Conde, L.E. On the existence of a weak Zariski decomposition on projectivized vector bundles. Geom Dedicata 179, 287–301 (2015). https://doi.org/10.1007/s10711-015-0082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0082-8

Keywords

Mathematics Subject Classification (2010)

Navigation