Skip to main content
Log in

An isodiametric problem of fractal dimension

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For \(0<\lambda <\frac{1}{2}\) we consider the product \(F_\lambda =E_\lambda \times {\mathbb R}\), where \(E_\lambda \) is the attractor of the IFS \(\{x\mapsto \lambda x,\ \ x\mapsto 1\!-\!\lambda +\lambda x\}\) on \({\mathbb R}\). The Huasdorff dimension of \(F_\lambda \) is \(s=1-\frac{\ln 2}{\ln \lambda }\). We show that \(\sup \left\{ \frac{{\mathcal H}^s(X\cap F_\lambda )}{|X|^s}: |X|>0\right\} =1\) and that there is a convex compact set \(A\) (\(=A(\lambda )\)) with \(\frac{{\mathcal H}^s(A\cap F_\lambda )}{|A|^s}=1\). Such a convex compact set \(A\) is called an “extremal set” of \(F_\lambda \) with respect to \(s\)-dimensional Hausdorff measure \({\mathcal H}^s\). When \(\lambda \) is small, say \(\lambda \le \frac{1}{5}\), we further show that there exists an extremal set \(A\) with \(|A|\ge \frac{2}{\sqrt{3}}\) such that \({\mathcal H}^s(A\cap F_\lambda )={\mathcal H}^s(D_{|A|}\cap F_\lambda )\) for \(D_{|A|}=\left\{ (x,y): \left( x-\frac{1}{2}\right) ^2+y^2 \le \frac{1}{4}|A|^2\right\} \). As an application, we can estimate the value of \({\mathcal H}^s(E_\lambda \!\times \![0,1])\) to any pre-set error \(\epsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ayer, E., Strichartz, R.S.: Exact Hausdorff measure and intervals of maximum density for Cantor sets. Trans. Am. Math. Soc. 351, 3725–3741 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press Inc, Boca Raton (1992)

    MATH  Google Scholar 

  3. Falconer, K.J.: Geoemtry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  4. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2013)

    Google Scholar 

  5. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. He, W.-H., Luo, J., Zhou, Z.-L.: Hausdorff measure and isodiametric inequalities. Acta Math. Sin. (Chin. Ser.) 48(5), 939–946 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Marstrand, J.M.: The dimension of Cartesian product sets. Proc. Camb. Philos. Soc. 50, 198–202 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  8. Strichartz, Robert S.: Isoperimetric estimates on Sierpinski gasket type fractals. Trans. Am. Math. Soc. 351(5), 1705–1752 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wen, Sheng-You, Xu, Shao-Yuan: On Hausdorff measures of self-similar sets. Acta Math. Sin. (A Ser.) 44(1), 117–124 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Zhou, Z.-L.: The Hausdorff measure of the self-similar sets—the Koch curve. Sci. China Ser. A 41(7), 723–728 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhou, Z.-L., Wu, M.: The Hausdorff measure of a Sierpinski carpet. Sci. China Ser. A 42(7), 673–680 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhu, Y.-C., Lou, J.: Hausdorff measure of generalized Sierpinski carpets. Approx. Theor. Appl. 2, 13–18 (2000)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for many critics which improve clarity and readability of this paper. They also owe their thanks to Dr. Li Feng at Albany State University (Georgia) for discussions on related problems and for suggestions on English writing when they are making revisions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Luo.

Additional information

This research is partially supported by China’s NSFC (Nos. 11371383, 11371379, 10971233 and 11171123) and by the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, XR., He, WH., Luo, J. et al. An isodiametric problem of fractal dimension. Geom Dedicata 175, 79–91 (2015). https://doi.org/10.1007/s10711-014-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-0030-z

Keywords

Mathematics Subject Classification (2000)

Navigation