Skip to main content
Log in

Classical curves via one-vertex maps

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

One-vertex maps (a type of dessin d’enfant) give a uniform characterization of certain well-known algebraic curves, including those of Klein, Wiman, Accola–Maclachlan and Kulkarni. The characterization depends on a new classification of one-vertex (dually, one-face or unicellular) maps according to the size of the group of map automorphisms. We use an equivalence relation appropriate for studying the faithful action of the absolute Galois group on dessins, although we do not pursue that line of inquiry here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accola R.D.M.: On the number of automorphisms of a closed Riemann surface. Trans. Am. Math. Soc. 131, 398–408 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belyĭ G.: On Galois extensions of a maximal cyclotomic field. Math. USS Izv. 14(2), 247–256 (1980)

    Article  MATH  Google Scholar 

  3. Broughton S.A.: Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69, 233–270 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bujalance E., Conder M.: On cyclic groups of automorphisms of Riemann surfaces. J. Lond. Math. Soc. 59(2), 573–584 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bujalance E., Cirre F.J., Conder M.: On extendability of group actions on compact Riemann surfaces. Trans. Am. Math. Soc. 355(4), 1537–1557 (2002)

    Article  MathSciNet  Google Scholar 

  6. Conder M.D.E.: Regular maps and hypermaps of Euler characteristic −1 to 200. J. Combin. Theory Ser. B 99, 455–459 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coxeter H.S.M., Moser W.O.J.: Generators and Relations for Discrete Groups, 3rd ed. Springer, New York, Heidelberg, Berlin (1972)

    MATH  Google Scholar 

  8. Chapuy G.: A new combinatorial identity for unicellular maps, via a direct bijective approach. Adv. Appl. Math. 47(4), 874–893 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenberg, L.: Maximal groups and signatures, In: Discontinuous Groups and Riemann Surfaces. Ann. Math. Stud. No. 79 (Princeton, 1974), 207–226

  10. Grothendieck, A.: Esquisse d’un programme. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions, 1. LMS Lecture Notes Series 242, Cambridge University Press, Cambridge (1997)

  11. Harer J., Zagier D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85, 457–485 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harvey W.: Cyclic groups of automorphisms of a compact Riemann surface. Q. J. Math. Oxford 17(2), 86–97 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hurwitz A.: Uber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41, 403–442 (1893)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ireland, K., Rosen, M.: A classical introduction to modern number theory. Springer, GTM 84 (1982)

  15. Jones G.A., Singerman D.: Theory of maps on orientable surfaces. Proc. Lond. Math. Soc. 3, 273–307 (1978)

    Article  MathSciNet  Google Scholar 

  16. Jones G.A., Singerman D.: Complex functions: an algebraic and geometric viewpoint. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  17. Jones G.A., Singerman D.: Belyĭ functions, hypermaps and Galois groups. Bull. Lond. Math. Soc. 28(6), 561–590 (1996)

    Article  MathSciNet  Google Scholar 

  18. Jones, G.A., Streit, M.: Galois groups, monodromy groups and cartographic groups. In: Schneps L., Lochak P. (eds) Geometric Galois Actions, 2. LMS Lecture Notes Series 243. Cambridge University Press, Cambridge, (1997)

  19. Jones G.A., Streit M., Wolfart J.: Wilson’s map operations on regular dessins and cyclotomic fields of definition. Proc. Lond. Math. Soc. 100, 510–532 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Katok, S.: Fuchsian groups. Chicago Lectures in Mathematics, University of Chicago Press, Chicago (1992)

  21. Klein F.: Uber die Transformationen siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14, 428–471 (1879)

    Article  MATH  Google Scholar 

  22. Koeck B.: Belyĭ ’s theorem revisited. Beiträge zur Algebra und Geometrie 45(1), 253–265 (2004)

    MATH  Google Scholar 

  23. Kulkarni R.S.: A note on Wiman and Accola–Maclachlan surfaces. Ann. Acad. Sci. Fenn. Ser. A.I. Math. 16, 83–94 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Kulkarni, R.S.: Riemann surfaces admitting large automorphism groups, in Extremal Riemann surfaces, Contemporary Mathematics Series 201, In Quine, J.R., and Sarnak, P. (eds.) Am. Math. Soc. pp. 63–79 (1997)

  25. Lando S.K., Zvonkin A.K.: Graphs On Surfaces and Their Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  26. Macbeath, A.M.: Discontinuous groups and birational transformations, In: Proceedings of the Summer School in Geometry and Topology, Queens College, Dundee, pp. 59–75 (1961)

  27. Macbeath A.M.: On a theorem of Hurwitz. Proc. Glasgow Math. Assoc. 5, 90–96 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maclachlan C.: Abelian groups of automorphisms of compact Riemann surfaces. Proc. Lond. Math Soc. 15(3), 669–712 (1965)

    MathSciNet  Google Scholar 

  29. Maclachlan C.: A bound for the number of automorphisms of a compact Riemann surface. J. Lond. Math. Soc. 44, 265–272 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mulase M., Penkava M.: Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \({\overline{\mathbb{Q}}^*}\). Asian J. Math. 2(4), 875–920 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Melekoğlu A., Singerman D.: Reflections of regular maps and Riemann surfaces, Rev. Mat. Iberoam. 24(3), 921–939 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Singerman D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 6(2), 29–38 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Singerman D.: Unicellular dessins and a uniqueness theorem for Klein’s Riemann surface of genus 3. Bull. Lond. Math. Soc. 33, 701–710 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Scott W.R.: Group Theory. Dover Publications, New York (1987)

    MATH  Google Scholar 

  35. Springer G.: Introduction to Riemann Surfaces. Addison-Wesley, Reading (1957)

    MATH  Google Scholar 

  36. Wiman, A.: Über die Hyperelliptischen Curven und diejenigen von Geschlechte p = 3 welche eindeutige Transformationen in sich zulassen, Bighang Till K. Svenska Vet.-Akad. Handlingar (Stockholm 1895-6) bd. 21 1-23

  37. Wolfart, J.: The ‘obvious’ part of Belyĭ ’s theorem and Riemann surfaces with many automorphisms, in Geometric Galois Actions, 1, In: Schneps L. and Lochak P. (eds) LMS Lecture Notes Series 242, Cambridge University Press, Cambridge (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Weaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, A. Classical curves via one-vertex maps. Geom Dedicata 163, 141–158 (2013). https://doi.org/10.1007/s10711-012-9740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9740-2

Keywords

Mathematics Subject Classification

Navigation