Skip to main content
Log in

Generalized CRF-structures

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A generalized F-structure is a complex, isotropic subbundle E of \({T_cM \oplus T^*_cM}\) (\(T_cM = TM \otimes_{{\mathbb{R}}} {\mathbb{C}}\) and the metric is defined by pairing) such that \(E \cap \bar{E}^{\perp} = 0\). If E is also closed by the Courant bracket, E is a generalized CRF-structure. We show that a generalized F-structure is equivalent with a skew-symmetric endomorphism Φ of \(TM \oplus T^*M\) that satisfies the condition Φ3 +  Φ =  0 and we express the CRF-condition by means of the Courant-Nijenhuis torsion of Φ. The structures that we consider are generalizations of the F-structures defined by Yano and of the CR (Cauchy-Riemann) structures. We construct generalized CRF-structures from: a classical F-structure, a pair \(({\mathcal{V}}, \sigma)\) where \({\mathcal{V}}\) is an integrable subbundle of TM and σ is a 2-form on M, a generalized, normal, almost contact structure of codimension h. We show that a generalized complex structure on a manifold M̃ induces generalized CRF-structures into some submanifolds \(M \subseteq \tilde{M}\) . Finally, we consider compatible, generalized, Riemannian metrics and we define generalized CRFK-structures that extend the generalized Kähler structures and are equivalent with quadruples (γ, F +, F , ψ), where (γ, F ±) are classical, metric CRF-structures, ψ is a 2-form and some conditions expressible in terms of the exterior differential d ψ and the γ-Levi-Civita covariant derivatives ∇ F ± hold. If d ψ =  0, the conditions reduce to the existence of two partially Kähler reductions of the metric γ. The paper ends by an Appendix where we define and characterize generalized Sasakian structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barros C.M. (1965). Variétés presque hor-complexes. C. R. Acad. Sci. Paris 260: 1543–1546

    MathSciNet  Google Scholar 

  2. Bejancu A. (1986). Geometry of CR-submanifolds, Mathematics and its Applications (East European Series), Vol. 23. D. Reidel Publishing Co., Dordrecht

    Google Scholar 

  3. Blair D.E. (1970). Geometry of manifolds with structural group \({\mathcal{U}}(n) \times {\mathcal{O}}(s)\) J. Differential Geom. 4: 155–167

    MATH  MathSciNet  Google Scholar 

  4. Blair D.E. (2002). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, Vol. 203. Birkhäuser Boston, Inc., Boston, MA

    Google Scholar 

  5. Courant T.J. (1990). Dirac manifolds. Trans. Am. Math. Soc. 319: 631–661

    Article  MATH  MathSciNet  Google Scholar 

  6. Dragomir S. and Tomassini G. (2006). Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, vol. 246. Birkhäuser Verlag, Basel

    Google Scholar 

  7. Gualtieri, M.: Generalized complex geometry, Ph.D. thesis, Univ. Oxford (2003); arXiv:math.DG/0401221

  8. Goldberg S.I. and Yano K. (1970). On normal globally framed f-manifolds. Tôhoku Math. J. 22(2): 362–370

    Article  MATH  MathSciNet  Google Scholar 

  9. Hitchin N.J. (2003). Generalized Calabi-Yau manifolds. Quart. J. Math. 54: 281–308

    Article  MATH  MathSciNet  Google Scholar 

  10. Iglesias-Ponte D. and Wade A. (2005). Contact manifolds and generalized complex structures. J. Geom. Phys. 53: 249–258

    Article  MATH  MathSciNet  Google Scholar 

  11. Kobayashi S. and Nomizu K. (1969). Foundations of Differential Geometry, vol. II. Interscience Publ., New York

    MATH  Google Scholar 

  12. Lindström U., Minasian R., Tomasiello A. and Zabzine M. (2005). Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257: 235–256

    Article  MATH  Google Scholar 

  13. Liu Z.-J., Weinstein A. and Xu P. (1997). Manin triples for Lie bialgebroids. J. Differential Geom. 45: 547–574

    MathSciNet  Google Scholar 

  14. Vaisman I. (2007). Reduction and submanifolds of generalized complex manifolds. Differential Geom. Appl. 25: 147–166

    Article  MATH  MathSciNet  Google Scholar 

  15. Vaisman I. (2007). Dirac structures and generalized complex structures on \(TM \times {\mathbb{R}}^h\). Adv. Geom. 7: 453–474

    Article  MATH  MathSciNet  Google Scholar 

  16. Vaisman I. (2007). Isotropic subbundles of \(TM \oplus T^*M\). Int. J. Geom. Methods Mod. Phys. 4: 487–516

    Article  MathSciNet  Google Scholar 

  17. Wade A. (2004). Dirac structures and paracomplex manifolds. C. R. Acad. Sci. Paris, Ser. I 338: 889–894

    MATH  MathSciNet  Google Scholar 

  18. Yano K. (1963). On a structure defined by a tensor field f of type (1, 1) satisfying f 3 + f =  0. Tensor 14: 99–109

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izu Vaisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisman, I. Generalized CRF-structures. Geom Dedicata 133, 129–154 (2008). https://doi.org/10.1007/s10711-008-9239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-008-9239-z

Keywords

Mathematics Subject Classification (2000)

Navigation