Skip to main content
Log in

Self-repair ability of evolved self-assembling systems in cellular automata

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

Self-repairing systems are those that are able to reconfigure themselves following disruptions to bring them back into a defined normal state. In this paper we explore the self-repair ability of some cellular automata-like systems, which differ from classical cellular automata by the introduction of a local diffusion process inspired by chemical signalling processes in biological development. The update rules in these systems are evolved using genetic programming to self-assemble towards a target pattern. In particular, we demonstrate that once the update rules have been evolved for self-assembly, many of those update rules also provide a self-repair ability without any additional evolutionary process aimed specifically at self-repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Agresti, B. Coull, Approximation is better than ‘exact’ for interval estimation of binomial proportions. Am. Stat. 52, 119–126 (1998)

    MathSciNet  Google Scholar 

  2. M.S. Capcarrere, An evolving ontogenetic cellular system for better adaptiveness. BioSystems 76, 177–189 (2004)

    Article  Google Scholar 

  3. P.A. Cariani, The homeostat as embodiment of adaptive control. Int. J. Gen. Syst. 38(2), 139–154 (2009)

    Article  MATH  Google Scholar 

  4. H. de Garis, Artificial embryology and cellular differentiation. In: P.J. Bentley (eds) Evolutionary Design by Computers., (Morgan Kauffmann, Los Altos, 1999), pp. 281–295

    Google Scholar 

  5. A. Eiben, J. Smith, Introduction to Evolutionary Computing. (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  6. S. Franchi, Life, death and resurrection of the homeostat. In: S. Franchi, F. Bianchini (eds) The Search for a Theory of Cognition: Early Mechanisms and New Ideas., (Editions Rodopi, Amsterdam, 2011), pp. 3–52

    Google Scholar 

  7. M. Garvie, A. Thompson, Evolution of self-diagnosing hardware. In: Evolvable Systems: From Biology to Hardware: Proceedings of the 5th International Conference, vol. 2606, Lecture Notes in Computer Science, (2003), pp. 238–248

  8. J. Gray, D.P. Siewiorek, High-availability computer systems. Computer 24(9), 39–48 (1991)

    Article  Google Scholar 

  9. F. Gruau, Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm. Ph.D. thesis, Ecole Normale Superieure de Lyon, 1994

  10. S. Kumar, P.J. Bentley (eds), On Growth, Form, and Computers. (Academic Press, New York, 2003)

    Google Scholar 

  11. H. Liu, J.F. Miller, A.M. Tyrell, An intrinsic robust transient fault-tolerant developmental model for digital systems. In: Workshop on Regeneration and Learning in Developmental Systems at the 2004 Genetic and Evolutionary Computation Conference (GECCO 2004), 2004

  12. R.E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve computer reliability. IBM J. 6, 200–209 (1962)

    Article  MATH  Google Scholar 

  13. N.J. Macias, L.J.K. Durbeck, Self-assembling circuits with autonomous fault handling. In: A. Stoica, J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (eds) Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, (IEEE Computer Society, Los Alamitos, 2002), pp. 46–55

  14. D. Mange, M. Sipper, A. Stauffer, G. Tempesti, Towards robust integrated circuits: the embryonics approach. Proc. IEEE 88(4), 516–541 (2000)

    Article  Google Scholar 

  15. D. Mange, A. Stauffer, Introduction to embryonics: towards new self-repairing and self-reproducing hardware based on biological-like properties. In: N. Mangenat, D. Thalmann (eds) Artificial Life and Virtual Reality, (Wiley, London, 1994), pp. 61–72

    Google Scholar 

  16. J.F. Miller, W. Banzhaf. Evolving the program for a cell: from French flags to boolean circuits. In: S. Kumar, P.J. Bentley (eds) On Growth, Form, and Computers, chap. 15. (Academic Press, New York, 2003)

  17. J.F. Miller, P. Thomson, Beyond the complexity ceiling: evolution, emergence, and regeneration. In: Workshop on Regeneration and Learning in Developmental Systems at the 2004 Genetic and Evolutionary Computation Conference (GECCO 2004), 2004

  18. J.F. Miller, Evolving developmental programs for adaptation, morphogenesis and self-repair. In: W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, J. Ziegler (eds) Advances in Artificial Life: 7th European Conference (Springer, 2003), pp. 256–265

  19. J.F. Miller, Evolving a self-repairing, self-regulating French flag organism. In: K. Deb, R. Poli, W. Banzhaf, H.G. Beyer (eds) Proceedings of the 2004 Genetic and Evolutionary Computation Conference (GECCO 2004) vol. 3102. Lecture Notes in Computer Science, (Springer, 2004), pp. 129–139

  20. J.F. Miller (eds), Cartesian Genetic Programming. (Springer, Berlin, 2011)

    MATH  Google Scholar 

  21. A. Moraglio, K. Krawiec, C.G. Johnson. Geometric semantic genetic programming. In: Parallel Problem Solving from Nature: PPSN XII—Lecture Notes in Computer Science, vol. 7491, (Springer, 2012), pp. 21–31

  22. R.G. Newcombe, Two-sided confidence intervals for the single proportion: comparison of three methods. Stat. Med. 17, 857–872 (1998)

    Article  Google Scholar 

  23. C. Öztürkeri, M.S. Capcarrere, Emergent robustness and self-repair through developmental cellular systems. In: J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R. A. Watson (eds), Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, (MIT Press, Cambridge, 2004), pp. 26–31

  24. C. Öztürkeri, M.S. Capcarrere, Self repair ability of a toroidal and non-toroidal cellular developmental model. In: M. Capcarrere, A.A. Freitas, P.J. Bentley, C.G. Johnson, (eds) Advances in Artificial Life: 8th European Conference on Artificial Life, vol. 3630, Lecture Notes in Artificial Intelligence, (Springer, 2005), pp. 138–148

  25. C. Öztürkeri, Investigation of Developmental Methods for Growing Self-repairing Programs. Ph.D. thesis, University of Kent, Canterbury, 2008

  26. C. Öztürkeri, C.G. Johnson, Evolution of self-assembling patterns in cellular automata using development. J. Cell. Autom. 6(4), 257–300 (2011)

    MathSciNet  Google Scholar 

  27. G. Pask, An Approach to Cybernetics. (Harper and Brothers, New York, 1961)

    Google Scholar 

  28. R. Poli, W. B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk , 2008. (With contributions by J. R. Koza)

  29. W. Powers, Behavior: The Control of Perception. (Aldine, New York, 1973)

    Google Scholar 

  30. L. Prodan, G. Tempesti, D. Mange, A. Stauffer, Embryonics: Electronic stem cells. In: R.K. Standish, M.A. Bedau, H.A. Abbass, (eds) Artificial Life VIII: Proceedings of the Eight International Conference on the Simulation and Synthesis of Living Systems, (2002), pp. 101–105

  31. P. Prusinkiewicz, A. Lindenmayer. (Springer, Berlin, 1990)

    Google Scholar 

  32. B. Randell, P. Lee, P.C. Treleaven, Reliability issues in computing system design. ACM Comput. Surv. 10(2), 123–165 (1978)

    Article  MATH  Google Scholar 

  33. D. Roggen, D. Federici, Multi-cellular development: is there scalability and robustness to gain? In: X. Yao, E. Burke, J.A. Lozano, J. Smith (eds), Proceedings of PPSN VIII 2004: The 8th International Conference on Parallel Problem Solving from Nature, vol. 3242, Lecture Notes in Computer Science, (Springer, 2004) , pp. 391–400

  34. D. Roggen, D. Floreano, C. Mattiussi. A morphogenetic evolutionary system: phylogenesis of the POEtic circuit. In: A.M. Tyrell, P.C. Haddow, J. Torresen, (eds) Evolvable Systems: From Biology to Hardware: 5th International Conference, ICES 2003, (Springer, 2003), pp. 153–164

  35. A. Stauffer, M. Sipper, The data-and-signals cellular automaton and its application to growing structures. Artif. Life 10, 463–477 (2004)

    Article  Google Scholar 

  36. F. Streichert, C. Spieth, H. Ulmer, A. Zell, Evolving the ability of limited growth and self-repair for artificial embryos. In: W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, J. Ziegler (eds) Advances in Artificial Life: 7th European Conference, (Springer, 2003), pp. 289–298

  37. L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: 16th European Conference on Genetic Programming, (Springer, 2013), pp. 205–216

  38. L. Wolpert, Principles of Development. (Oxford University Press, Oxford, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin G. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öztürkeri, C., Johnson, C.G. Self-repair ability of evolved self-assembling systems in cellular automata. Genet Program Evolvable Mach 15, 313–341 (2014). https://doi.org/10.1007/s10710-014-9216-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-014-9216-2

Keywords

Navigation