1.

F. Adachi, T. Washio, H. Motoda, Scientific discovery of dynamic models based on scale-type constraints. IPSJ Digit. Cour.

**2**, 607–619 (2006)

CrossRef2.

L.A. Aguirre, U.S. Freitas, C. Letellier, J. Maquet, Structure-selection techniques applied to continuous-time nonlinear models. Physica D

**158**, 1–18 (2001)

MATHCrossRef3.

L.A. Aguirre, C. Letellier, Modeling nonlinear dynamics and chaos: a review. Math. Probl. Eng. (2009). doi:

10.1155/2009/238960
MathSciNet4.

D.P. Ahalpara, A. Sen, in *Proceedings of the*
*EuroGP 2011*, ed. by S. Silva, J.A. Foster, M. Nicolau, P. Machado, M. Giacobini. A sniffer technique for an efficient deduction of model dynamical equations using genetic programming (Springer, Berlin, 2011), pp. 1–12

5.

S. Ando, E. Sakamoto, H. Iba, Evolutionary modeling and inference of gene network. Inf. Sci.

**145**(3–4), 237–259 (2002)

MathSciNetCrossRef6.

H. Andrew, in *Proceedings of the*
*2nd International Conference on Adaptive Computing in Engineering Design and Control*. System identification using genetic programming (University of Plymouth, Plymouth, 1996), pp. 57–62

7.

P.J. Angeline, D.B. Fogel, in *Proceedings of the*
*SPIE.* An evolutionary program for the identification of dynamical systems (1997), pp. 409–417

8.

B. Argemí, J. Saurina, Study of the degradation of 5-azacytidine as a model of unstable drugs using a stopped-flow method and further data analysis with multivariate curve resolution. Talanta

**74**, 176–182 (2007)

CrossRef9.

K.J. Åström, P. Eykhoff, System identification—a survey. Automatica

**7**(2), 123–162 (1971)

MATHCrossRef10.

E. Baake, M. Baake, H.G. Bock, K.M. Briggs, Fitting ordinary differential equations to chaotic data. Phys. Rev. A

**45**(8), 5524–5529 (1992)

CrossRef11.

V. Babovic, M. Keijzer, in *Proceedings of the*
*4th International Conference on Hydroinformatics*. Evolutionary algorithms approach to induction of differential equations (Iowa City, USA, 2000), pp. 251–258

12.

R. Bakker, J.C. Schouten, C.L. Giles, F. Takens, C.M. van den Bleek, Learning chaotic attractors. Neural Comput.

**12**(10), 2355–2383 (2000)

CrossRef13.

W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, *Genetic Programming: An Introduction on the Automatic Evolution of Computer Programs and Its Applications* (Morgan Kaufmann, San Francisco, 1997)

14.

J.A. Beisler, Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J. Med. Chem.

**21**(2), 204–208 (1978)

CrossRef15.

H.S. Bernardino, H.J.C. Barbosa, Inferring systems of ordinary differential equations via grammar-based immune programming. LNCS **6825**, 198–211 (2011)

16.

C.M. Bishop,

*Pattern Recognition and Machine Learning* (Springer, New York, 2006)

MATH17.

S. Boccaletti,

*The Synchronized Dynamics of Complex Systems* (Elsevier, Amsterdam, 2008)

MATH18.

J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynamical systems. PNAS

**104**(24), 9943–9948 (2007)

MATHCrossRef19.

E. Bradley, M. Easley, R. Stolle, Reasoning about nonlinear system identification. Artif. Intell.

**133**, 139–188 (2001)

MATHCrossRef20.

M. Brameier, W. Banzhaf,

*Linear Genetic Programming* (Springer, New York, 2007)

MATH21.

J.L. Breeden, A. Hübler, Reconstructing equations of motion from experimental data with unobserved variables. Phys. Rev. A

**42**(10), 5817–5826 (1990)

MathSciNetCrossRef22.

W. Bridewell, P. Langley, L. Todorovski, S. Dzeroski, Inductive process modeling. Mach. Learn.

**71**, 1–32 (2008)

CrossRef23.

H. Cao, L. Kang, Y. Chen, J. Yu, Evolutionary modeling of systems of ordinary differential equations with genetic programming. Genet. Program Evolvable Mach.

**1**(4), 309–337 (2000)

MATHCrossRef24.

O.-T. Chis, J.R. Banga, E. Balsa-Canto, Structural identifiability of systems biology models: a critical comparison of methods. PLoS ONE

**6**(11), e27755 (2011)

CrossRef25.

K.-H. Cho, S.-Y. Shin, H.-W. Kim, O. Wolkenhauer, B. McFerran, W. Kolch, Mathematical modeling of the influence of RKIP on the ERK signaling pathway. LNCS **2602**, 127–141 (2003)

26.

D. Clery, D. Voss, All for one and one for all. Science

**308**, 809 (2005)

CrossRef27.

J. Cremers, A. Hübler, Construction of differential equations from experimental data. Zeitschrift für Naturforschung A **42**(8), 797–802 (1987)

28.

J.P. Crutchfield, B.S. McNamara, Equations of motion from a data series. Complex Syst.

**1**(3), 417–452 (1987)

MathSciNetMATH29.

S. Džeroski, L. Todorovski, in *Proceedings of the 10th International Conference on Machine Learning.* Discovering dynamics (Kaufmann, Amherst, 1993), pp. 97–103

30.

J. Evans, A. Rzhetsky, Machine science. Science

**329**, 3994400 (2010)

CrossRef31.

G. Gouesbet, Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series. Phys. Rev. A

**43**(10), 5321–5331 (1991)

MathSciNetCrossRef32.

P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Physica D

**9**, 189–208 (1983)

MathSciNetMATHCrossRef33.

G.J. Gray, D.J. Murray-Smith, Y. Li, K.C. Sharman, in *Proceedings of the 2nd International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications*. Nonlinear model structure identification using genetic programming (Inst of Electrical Engineers, London, 1997), pp. 308–313

34.

G.J. Gray, D.J. Murray-Smith, Y. Li, K.C. Sharman, T. Weinbrenner, Nonlinear model structure identification using genetic programming. Control Eng. Pract.

**6**, 1341–1352 (1998)

CrossRef35.

M.S. Grewal, K. Glover, Identifiability of linear and nonlinear dynamical systems. IEEE Trans. Automat. Control

**21**(6), 833–837 (1976)

MathSciNetMATHCrossRef36.

S. Hengl, C. Kreutz, J. Timmer, T. Maiwald, Data-based identifiability analysis of non-linear dynamical models. Bioinformatics

**23**(19), 2612–2618 (2007)

CrossRef37.

A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Phys. **117**, 500–544 (1952)

38.

X. Hong, R.J. Mitchell, S. Chen, C.J. Harris, K. Li, G.W. Irwin, Model selection approaches for non-linear system identification: a review. Int. J. Syst. Sci.

**39**(10), 925–946 (2008)

MathSciNetMATHCrossRef39.

H. Iba, H. de Garis, T. Sato, in *Proceedings of the PPSN III*, ed. by Y. Davidor, H.-P. Schwefel, R. Männer. Genetic programming with local hill-climbing (Springer, London, 1994), pp. 302–311

40.

H. Iba, Inference of differential equation models by genetic programming. Inf. Sci.

**178**(23), 4453–4468 (2008)

CrossRef41.

S.J. Julier, J.K. Uhlmann, in *Proceedings of the International Symposium on Aerospace/Defense Sensing, Simulation, and Controls.* A new extension of the Kalman filter to nonlinear systems (1997), pp. 182–193

42.

M.A. Kaboudan, Genetic programming prediction of stock prices. Comput. Econ.

**16**(3), 207–236 (2000)

MATHCrossRef43.

M.B. Kennel, R. Brown, H.D. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A

**45**(6), 3403–3411 (1992)

CrossRef44.

R.D. King, K.E. Whelan, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, S.G. Oliver, Functional genomic hypothesis generation and experimentation by a robot scientist. Nature

**427**, 247–252 (2004)

CrossRef45.

L.D. Kissinger, N.L. Stemm, Determination of the antileukemia agents cytarabine and azacitidine and their respective degradation products by high-performance liquid chromatography. J. Chromatogr.

**353**, 309–318 (1986)

CrossRef46.

J. Koza,

*Genetic Programming: On the Programming of Computers by Means of Natural Selection* (MIT Press, Cambridge, 1992)

MATH47.

P. Langley, Data-driven discovery of physical laws. Cognitive Sci.

**5**, 31–54 (1981)

CrossRef48.

P. Langley, H.A. Simon, G.L. Bradshaw, J.M. Zytkow, *Scientific Discovery: Computational Explorations of the Creative Processes* (MIT Press, Cambridge, 1987)

49.

P. Langley, J. Sanchez, L. Todorovski, S. Džeroski, in *Proceedings of the 19th International Conference on Machine Learning*. Inducing process models (Morgan Kaufmann, Sydney, 2002), pp. 347–354

50.

L. Ljung, *System Identification—Theory For the User*, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, 1999)

51.

E.N. Lorenz, Deterministic non-periodic flow. J. Atmos. Sci.

**20**(2), 130–141 (1963)

MathSciNetCrossRef52.

G. Mamani, J. Becedas, V.F. Batlle, H. Sira-Ramírez, Algebraic observer to estimate unmeasured state variables of DC motors. Eng. Lett. **16**(2), 248–255 (2008)

53.

D.J. Montana, Strongly typed genetic programming. Evol. Comput.

**3**(2), 199–230 (1995)

CrossRef54.

B.S. Mulloy, R.L. Riolo, R.S. Savit, in *Proceedings of the GECCO 1996*. Dynamics of genetic programming and chaotic time series prediction (MIT Press, Cambridge, MA, 1996), pp. 166–174

55.

C. Neely, P. Weller, R. Dittmara, Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J. Financ. Quant. Anal.

**32**, 405–426 (1997)

CrossRef56.

H. Oakley, Two scientific applications of genetic programming: stack filters and non-linear equation fitting to chaotic data, in *Advances Genetic Programming*, ed. by K.E. Kinnear Jr (MIT Press, Cambridge, MA, 1994), pp. 369–389

57.

N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Geometry from a time series. Phys. Rev. Lett.

**45**(9), 712–716 (1980)

CrossRef58.

S.N. Pnevmatikos (ed.),

*Singularities & Dynamical Systems* (Elsevier, Amsterdam, 1985)

MATH59.

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling,

*Numerical Recipes: The Art of Scientific Computing*, 3rd edn. (Cambridge University Press, Cambridge, 2007)

MATH60.

L. Qian, H. Wang, E.R. Dougherty, Inference of noisy nonlinear differential equation models for gene regulatory networks using genetic programming and Kalman filtering. IEEE Trans. Signal Process.

**56**(7), 3327–3339 (2008)

MathSciNetCrossRef61.

A. Raue, V. Becker, U. Klingmüller, J. Timmer, Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos

**20**, 045105 (2010)

CrossRef62.

K. Rodriguez-Vázquez, P.J. Fleming, Evolution of mathematical models of chaotic systems based on multiobjective genetic programming. Knowl. Inf. Syst.

**8**(2), 235–256 (2005)

CrossRef63.

K. Routray, G. Deo, Kinetic parameter estimation for a multiresponse nonlinear reaction model. AIChE J.

**51**(6), 1733–1746 (2005)

CrossRef64.

S. Russell, P. Norvig, *Artificial Intelligence: A Modern Approach*, 3rd edn. (Prentice Hall, Upper Saddle River, NJ, 2009)

65.

C. Ryan, J.J. Collins, M. O’Neill, in *Proceedings of the EuroGP 1998*, ed. by W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty. Grammatical evolution: evolving programs for an arbitrary language (Springer, London, 1998), pp. 83–96

66.

E. Sakamoto, H. Iba, in *Proceedings of the CEC 2001*. Inferring a system of differential equations for a gene regulatory network by using genetic programming (2001), pp. 720–726

67.

M.D. Schmidt, H. Lipson, Coevolution of fitness predictors. IEEE Trans. Evol. Comput.

**12**(6), 736–749 (2008)

CrossRef68.

M.D. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science

**324**(5923), 81–85 (2009)

CrossRef69.

M.D. Schmidt, H. Lipson, in *Proceedings of the GECCO 2010*. Age-fitness Pareto optimization (2010), pp. 543–544

70.

M.D. Schmidt, H. Lipson, Age-fitness Pareto optimization. Genet. Program. Theory Pract. **8**, 129–146 (2010)

71.

M. Schwabacher, P. Langley, in *Proceedings of the ICML 2001*, ed. by C.E. Brodley, A.P. Danyluk. Discovering communicable scientific knowledge from spatio-temporal data (Morgan Kaufmann Publishers Inc., San Francisco, CA, 2001), pp. 489–496

72.

K.V. Sharp, R.J. Adrian, Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids

**36**(5), 741–747 (2004)

CrossRef73.

J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjalmarsson, A. Juditsky, Nonlinear black-box modeling in system identification: a unified overview. Automatica

**31**(12), 1691–1724 (1995)

MathSciNetMATHCrossRef74.

W.E. Stewart, M. Caracotsios, J.P. Sørensen, Parameter estimation from multiresponse data. AIChE J.

**38**(5), 641–650 (1992)

CrossRef75.

S.H. Strogatz, Exploring complex networks. Nature

**410**, 268–276 (2001)

CrossRef76.

A. Szalay, J. Gray, 2020 Computing: science in an exponential world. Nature

**440**, 413–414 (2006)

CrossRef77.

F. Takens, Detecting strange attractors in turbulence. Lect. Notes Math.

**898**, 366–381 (1981)

MathSciNetCrossRef78.

L. Todorovski, S. Džeroski, in *Proceedings of the ICML 1997.* Declarative bias in equation discovery (Kaufmann, Nashville, 1997), pp 376–384

79.

S. Vajda, H. Rabitz, Identifiability and distinguishability of general reaction systems. J. Phys. Chem.

**98**, 5265–5271 (1994)

CrossRef80.

H.U. Voss, J. Timmer, J. Kurths, Nonlinear dynamical system identification from uncertain and indirect measurements. Int. J. Bifurcat. Chaos

**14**(6), 1905–1933 (2004)

MathSciNetMATHCrossRef81.

É. Walter, L. Pronzato,

*Identification of Parametric Models From Experimental Data* (Springer, New York, 1997)

MATH82.

D. Waltz, B.G. Buchanan, Automating science. Science

**324**(5923), 43–44 (2009)

CrossRef83.

T. Washio, H. Motoda, Y. Niwa, in *Proceedings of the ICML 2000*. Enhancing the plausibility of law equation discovery (2000), pp. 1127–1134

84.

H.-L. Wei, S.A. Billings, Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information. Int. J. Model. Identif. Control

**3**(4), 341–356 (2008)

CrossRef85.

P.A. Whigham, in *Proceedings of the Workshop on Genetic Programming: From Theory to Real*-*World Applications*, ed. by J.P. Rosca. Grammatically-based genetic programming (Tahoe City, California, 1995), pp. 33–41

86.

S. Winkler, M. Affenzeller, S. Wagner, New methods for the identification of nonlinear model structures based upon genetic programming techniques. J. Syst. Sci. **31**, 5–14 (2005)

87.

T. Yoshida, L.E. Jones, S.P. Ellner, G.F. Fussmann, N.G. Hairston Jr, Rapid evolution drives ecological dynamics in a predator-prey system. Nature

**424**, 303–306 (2003)

CrossRef