Skip to main content
Log in

Transposable elements in the Anopheles funestus transcriptome

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CDS:

Coding sequence

Db:

Database

LTR:

Long terminal repeat

MITE:

Miniature inverted repeat transposable elements

NLTR:

Non-long terminal repeat

ORF:

Open reading frame

PSI-Blast:

Position-specific iterated BLAST

RB:

Repbase

RPS-Blast:

Reverse position-specific BLAST

TE:

Transposable elements

TIR:

Terminal inverted repeat

TSD:

Terminal site duplications

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, cPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidãon-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weisenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC. (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arensburger P, Kim YJ, Orsetti J, Aluvihare C, O’Brochta DA, Atkinson PW (2005) An active transposable element, Herves, from the African malaria mosquito Anopheles gambiae. Genetics 169(2):697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, Kodira CD, Lobo NF, Mao C, Mayhew G, Michel K, Mori A, Liu N, Naveira H, Nene V, Nguyen N, Pearson MD, Pritham EJ, Puiu D, Qi Y, Ranson H, Ribeiro JM, Roberston HM, Severson DW, Shumway M, Stanke M, Strausberg RL, Sun C, Sutton G, Tu ZJ, Tubio JM, Unger MF, Vanlandingham DL, Vilella AJ, White O, White JR, Wondji CS, Wortman J, Zdobnov EM, Birren B, Christensen BM, Collins FH, Cornel A, Dimopoulos G, Hannick LI, Higgs S, Lanzaro GC, Lawson D, Lee NH, Muskavitch MA, Raikhel AS, Atkinson PW (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330(6000):86–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arensburger P, Hice RH, Zhou L, Smith RC, Tom AC, Wright JA, Knapp J, O’Brochta DA, Craig NL, Atkinson PW (2011) Phylogenetic and functional characterizationof the hAT transposon superfamily. Genetics 188(1):45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson PW, Warren WD, O’Brochta DA (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc Natl Acad Sci USA 90(20):9693–9697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJ (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25(21):2872–2877

    Article  CAS  PubMed  Google Scholar 

  • Brillet B, Bigot Y, Augé-Gouillou C (2007) Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 130(2):105–120

    Article  PubMed  Google Scholar 

  • Bui QT, Delaurière L, Casse N, Nicolas V, Laulier M, Chénais B (2007) Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. Gene 396:248–256

    Article  CAS  PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2005) HeT-A and TART, two Drosophila retrotransposons with a bona fide role in Chromosome Structure for more than 60 million years. Cytogenet Genome Res 110(1–4):152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509(1):7–15

    Article  PubMed  Google Scholar 

  • Chevillon C, Bernard C, Marquine M, Pasteur N (2001) Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae): interaction between recessive mutants and evolution in southern France. J Med Entomol 38:657–664

    Article  CAS  PubMed  Google Scholar 

  • Cook MJ, Martin J, Lewin A, Sinden ER, Tristem M (2000) Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons. Insect Mol Biol 9(1):109–117

    Article  CAS  PubMed  Google Scholar 

  • Copeland Mann VH, Morales ME, Kalinna BH, Brindley PJ (2005) The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol Biol 5:20

    Article  PubMed  Google Scholar 

  • Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9(1):e1003234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford JE, Guelbeogo WM, Sanou A, Traoré A, Vernick KD, Sagnon N, Lazzaro BP (2010) De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS One 5(12):e14202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darboux I, Charles JF, Pauchet Y, Warot S, Pauron D (2007) Transposon-mediated resistance to Bacillus sphaericus in a field-evolved population of Culex pipiens (Diptera: Culicidae). Cell Microbiol 9:2022–2029

    Article  CAS  PubMed  Google Scholar 

  • de Araujo PG, Rossi M, de Jesus EM, Saccaro NL Jr, Kajihara D, Massa R, de Felix JM, Drummond RD, Falco MC, Chabregas SM, Ulian EC, Menossi M, Van Sluys MA (2005) Transcriptionally active transposable elements in recent hybrid sugarcane. Plant J 44(5):707–717

    Article  PubMed  Google Scholar 

  • de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Chaux N, Wagner A (2011) BEL/Pao retrotransposons in metazoan genomes. BMC Evol Biol 11:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Deloger M, Cavalli FM, Lerat E, Bièmont C, Sagot MF, Vieira C (2009) Identification of expressed transposable element insertions in the sequenced genome of Drosophila melanogaster. Gene 439(1–2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Edgar, Robert C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Medina RD, Struchiner CJ, Ribeiro JM (2011) Novel transposable elements from Anopheles gambiae. BMC Genom 12:260

    Article  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gomulski LM, Torti C, Bonizzoni M, Moralli D, Raimondi E, Capy P, Gasperi G, Malacrida AR (2001) A new basal subfamily of mariner elements in Ceratitis rosa and other tephritid flies. J Mol E 53(6):597–606

    Article  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plants Sci 3:181–187

    Article  Google Scholar 

  • Green CL, Frommer M (2001) The genome of the Queensland fruit fly Bactrocera tryoni contains multiple representatives of the mariner family of transposable elements. Insect Mol Biol 10:371–386

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35(Database issue):D332–D338

    Article  CAS  PubMed  Google Scholar 

  • Gregory R, Darby AC, Irving H, Coulibaly MB, Hughes M, Koekemoer LL, Coetzee M, Ranson H, Hemingway J, Hall N, Wondji CS (2011) A de novo expression profiling of Anopheles funestus, malaria vector in Africa, using 454 pyrosequencing. PLoS One 6(2):e17418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591):129–149

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genom 12:389

    Article  CAS  Google Scholar 

  • Jiang F, Yang M, Guo W, Wang X, Kang L (2012) Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria. PLoS One 7(7):e40532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol.3(12)

  • Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412

    Article  PubMed  Google Scholar 

  • Kapitonov, V.V, Koonin E.V. (2015). Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct (2015) 10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karim S, Singh P, Ribeiro JM (2011) A deep insight into the sialotranscriptome of the gulf coast tick, Amblyomma maculatum. PLoS One 6:e28525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13(11):R107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG (1985) Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. Genetics 111(2):337–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Kines KJ, Belancio VP (2012) Expressing genes do not forget their LINEs: transposable elements and gene expression. Front Biosci (Landmark Ed) 17:1329–44

    Article  CAS  Google Scholar 

  • LeRouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. PNAS 104(49):19375–19380

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A (2009) Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 2(4):41

    Article  Google Scholar 

  • Lohe AR, Moriyama EN, Lidholm DA, Hartl DL (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12(1):62–72

    Article  CAS  PubMed  Google Scholar 

  • Marinotti O, Cerqueira GC, de Almeida LG, Ferro MI, Loreto EL, Zaha A, Teixeira SM, Wespiser AR, Almeida E Silva A, Schlindwein AD, Pacheco AC, Silva AL, Graveley BR, Walenz BP, Lima Bde A, Ribeiro CA, Nunes-Silva CG, de Carvalho CR, Soares CM, de Menezes CB, Matiolli C, Caffrey D, Araújo DA, de Oliveira DM, Golenbock D, Grisard EC, Fantinatti-Garboggini F, de Carvalho FM, Barcellos FG, Prosdocimi F, May G, Azevedo Junior GM, Guimarães GM, Goldman GH, Padilha IQ, Batista Jda S, Ferro JA, Ribeiro JM, Fietto JL, Dabbas KM, Cerdeira L, Agnez-Lima LF, Brocchi M, de Carvalho MO, Teixeira Mde M, Diniz Maia Mde M, Goldman MH, Cruz Schneider MP, Felipe MS, Hungria M, Nicolás MF, Pereira M, Montes MA, Cantão ME, Vincentz M, Rafael MS, Silverman N, Stoco PH, Souza RC, Vicentini R, Gazzinelli RT, Neves Rde O, Silva R, Astolfi-Filho S, Maciel TE, Urményi TP, Tadei WP, Camargo EP, de Vasconcelos AT (2012) The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res 41(15):7387–7400

    Article  Google Scholar 

  • Marsano RM, Leronni D, D’Addabbo P, Viggiano L, Tarasco E, Caizzi R (2012) Mosquitoes LTR retrotransposons: a deeper view into the genomic sequence of Culex quinquefasciatus. PLoS One 7(2):e30770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis W, Shermoen AW, Beckendorf SK (1983) A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, Spieth J, Carvalho AB, Panzera F, Lawson D, Torres AQ, Ribeiro JM, Sorgine MH, Waterhouse RM, Montague MJ, Abad-Franch F, Alves-Bezerra M, Amaral LR, Araujo HM, Araujo RN, Aravind L, Atella GC, Azambuja P, Berni M, Bittencourt-Cunha PR, Braz GR, Calderón-Fernández G, Carareto CM, Christensen MB, Costa IR, Costa SG, Dansa M, Daumas-Filho CR, De-Paula IF, Dias FA, Dimopoulos G, Emrich SJ, Esponda-Behrens N, Fampa P, Fernandez-Medina RD, da Fonseca RN, Fontenele M, Fronick C, Fulton LA, Gandara AC, Garcia ES, Genta FA, Giraldo-Calderón GI, Gomes B, Gondim KC, Granzotto A, Guarneri AA, Guigó R, Harry M, Hughes DS, Jablonka W, Jacquin-Joly E, Juárez MP, Koerich LB, Latorre-Estivalis JM, Lavore A, Lawrence GG, Lazoski C, Lazzari CR, Lopes RR, Lorenzo MG, Lugon MD, Majerowicz D, Marcet PL, Mariotti M, Masuda H, Megy K, Melo AC, Missirlis F, Mota T, Noriega FG, Nouzova M, Nunes RD, Oliveira RL, Oliveira-Silveira G, Ons S, Pagola L, Paiva-Silva GO, Pascual A, Pavan MG, Pedrini N, Peixoto AA, Pereira MH, Pike A, Polycarpo C, Prosdocimi F, Ribeiro-Rodrigues R, Robertson HM, Salerno AP, Salmon D, Santesmasses D, Schama R, Seabra-Junior ES, Silva-Cardoso L, Silva-Neto MA, Souza-Gomes M, Sterkel M, Taracena ML, Tojo M, Tu ZJ, Tubio JM, Ursic-Bedoya R, Venancio TM, Walter-Nuno AB, Wilson D, Warren WC, Wilson RK, Huebner E, Dotson EM, Oliveira PL. (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 112(48):14936–14941. doi:10.1073/pnas.1506226112. Epub 2015 Nov 16. Erratum in: Proc Natl Acad Sci USA. 2016 Mar 8;113(10):E1415–6

    Article  Google Scholar 

  • Miller WJ, McDonald JF, Pinske W (1997) Molecular domestication of mobile elements. Genetica 100:261–270

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Mouches C, Pauplin Y, Agarwal M, Lemieux L, Herzog M, Abadon M, Beyssat-Arnaouty V, Hyrien O, de Saint Vincent BR, Georghiou GP (1990) Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc Natl Acad Sci USA 87:2574–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouches C, Agarwal M, Campbell K, Lemieux L, Abadon M (1991) Sequence of a truncated LINE-like retroposon dispersed in the genome of Culex mosquitoes. Gene 106:279–280

    Article  CAS  PubMed  Google Scholar 

  • Mourier T, Willerslev E (2010) Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons. BMC Genom 12(11):167

    Article  Google Scholar 

  • Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcá B, Rensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VL, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DS, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MK, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O’Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GW, Tojo M, Topalis P, Tubio JM, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MA, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ (2015) Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347(6217):1258522

    Article  PubMed  Google Scholar 

  • O’Brochta DA, Warren WD, Saville KJ, Atkinson PW (1996) Hermes, a functional non-drosophilid gene vector from Musca domestica. Genetics 142:907–914

    PubMed  PubMed Central  Google Scholar 

  • Piégu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems—a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet E 86:90–109

    Article  Google Scholar 

  • Pietrokovski S, Henikoff S (1997) A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254(6):689–695

    Article  CAS  PubMed  Google Scholar 

  • Rao DR, Mani TR, Rajendran R, Joseph AS, Gajanana A, Reuben R (1995) Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc 11:1–5

    CAS  PubMed  Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM (2002) Evolution of DNA transposons in eukaryotes. In: Craig NL, Robert Craigie R, Gellert M, Lambowitz A. (eds) Mobile DNA II. ASM Press, Washington, DC, pp 1093–1110

    Chapter  Google Scholar 

  • Robertson HM, Asplund ML (1996) Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 26:945–954

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2:125–139

    Article  CAS  PubMed  Google Scholar 

  • Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sarkar A, Yardley K, Atkinson PW, James AA, O’Brochta DA (1997) Transposition of the Hermes element in embryos of the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 27(5):359–363

    Article  CAS  PubMed  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159(3):1103–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen F, Lim JK, Simmons MJ (1993) Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics 133(2):315–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sze SH, Dunham JP, Carey B, Chang PL, Li F, Edman RM, Fjeldsted C, Scott MJ, Nuzhdin SV, Tarone AM (2012) A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates. Insect Mol Biol 21(2):205–221

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Z, Li S (2009) Mobile genetic elements of malaria vectors and other mosquitoes. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000–2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6186/

  • Wallau GL, Capy P, Loreto E, Hua-Van A (2014) Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genom 15:727

    Article  Google Scholar 

  • Wang S, Lorenzen MD, Beeman RW, Brown SJ (2008) Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9(3):R61

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren WD, Atkinson PW, O’Brochta DA (1994) The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet Res 64(2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Weil CF, Kunze R (2000) Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat Genet 26(2):187–190

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • World Malaria Report (2015) World Health Organization. WHO Library Cataloguing-in-Publication Data

  • Xiong Y, Eickbush TH (1988) Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol 5(6):675–690

    CAS  PubMed  Google Scholar 

  • Yuan YW, Wessler SR (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108(19):7884–7889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan ZM, Zhang YM, Cai QX, Liu EY (2000) High-level resistance to Bacillus sphaericus C3–41 in Culex quinquefasciatus from Southern China. Biocontrol Sci Tech 10:41–49

    Article  Google Scholar 

Download references

Acknowledgements

R.D.F.M. has a postdoctoral position supported by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES). J.M.C.R was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases. Because JMCR is a government employees and this is a government work, the work is in the public domain in the United States. Notwithstanding any other agreements, the NIH reserves the right to provide the work to PubMedCentral for display and use by the public, and PubMedCentral may tag or modify the work consistent with its customary practices. You can establish rights outside of the U.S. subject to a government use license. C.M.A.C. was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant 306493/2013-6 and CJS was partially funded by CNPq and FAPERJ.

Author contributions

Conceived the study: RDFM, CMAC, JMR and CJS. Analyzed the data and wrote the paper: RDFM. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita D. Fernández-Medina.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Medina, R.D., Carareto, C.M.A., Struchiner, C.J. et al. Transposable elements in the Anopheles funestus transcriptome. Genetica 145, 275–293 (2017). https://doi.org/10.1007/s10709-017-9964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-017-9964-z

Keywords

Navigation