Skip to main content
Log in

“Cytochrome c oxidase I DNA sequence of Camponotus ants with different nesting strategies is a tool for distinguishing between morphologically similar species”

Genetica Aims and scope Submit manuscript

Abstract

The great diversity of Camponotus, high levels of geographic, intraspecific and morphological variation common to most species of this genus make the determination of the interspecific limits of Camponotus a complex task. The Cytochrome c oxidase 1 (COI) gene was sequenced in this study to serve as an auxiliary tool in the identification of two taxa of Camponotus thought to be morphologically similar. Additionally, characteristics related to nesting were described. Five to fifteen workers from twenty-one colonies were analyzed, collected from twigs scattered in the leaf litter and from trees located in different regions of Brazil. Phylogenetic reconstructions, haplotype network, and nesting strategies confirmed the existence of two species and that they correspond to Camponotus senex and Camponotus textor. Our results emphasize that the COI can be used as an additional tool for the identification of morphologically similar Camponotus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akre RD, Hansen LD (1990) Management of carpenter ants. In: Meer RKV, Jaffe K, Cedeno A (eds) Applied myrmecology–a world perspective. Westview Press, San Francisco, pp 693–700

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B, Pebesma M, Summer M (2013) rgdal: bindings for the geospatial data abstraction library. R package version, 1

  • Bolton B (2015) An online catalog of the ants of the world. http://antcat.org. Accessed Sep 2015

  • Brady SG, Gadau J, Ward PS (2000) Systematics of the ant genus Camponotus (Hymenoptera: Formicidae): a preliminary analysis using data from the mitochondrial gene cytochrome oxidase I. In: Austin AD, Dowton M (eds) Hymenoptera. Evolution, Biodiversity and Biological Control. CSIRO Publishing, Collingwood, Victoria, pp 131–139

  • Bueno OC, Campos-Farinha AEC (1999) Formigas Urbanas: estratégias de controle. Vetores and Pragas 2:5–7

    Google Scholar 

  • Byrne MM (1994) Ecology of twig-dwelling ants in a wet lowland tropical forest. Biotropica 1:61–72

    Article  Google Scholar 

  • Colombo AF, Joly CA (2010) Brazilian Atlantic forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708

    Article  CAS  PubMed  Google Scholar 

  • Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) Using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. Plos One 10(6):e0127838

  • Debout G, Schatz B, Elias M, Mckey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. Biol J Linn Soc 90:319–348

    Article  Google Scholar 

  • Delabie JHC, Agosti D, Nascimento IC (2000) Litter ant communities of the brazilian Atlantic rain forest region. In: Agosti D, Majer JD, Alonso LE, Schultz T (eds) Sampling ground-dwelling ants: case studies from world’s rain forests, vol 18. Curtin University School of Environmental Biology Bulletin, Perth, pp 1–17

    Google Scholar 

  • Del-Claro K, Oliveira PS (2000) Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and Homopteran fecundity. Oecologia 124:156–165

    Article  Google Scholar 

  • Del-Claro K, Berto V, Réu W (1996) Effect of herbivore deterrence by ants on the fruit set of an extrafloral nectary plant, Qualea multiflora (Vochysiaceae). J Trop Ecol 12:887–892

    Article  Google Scholar 

  • Fabricius, JC (1775) Systema entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus. Kortii, Flensbvrgi et Lipsiae 30: 832

  • Fernandes TT, Silva RR, Souza DR, Araújo N, Morini MSC (2012) Undecomposed twigs in the leaf litter as nest-building resources for ants (Hymenoptera: Formicidae) in areas of the Atlantic Forest in the southeastern region of Brazil. Pysche. doi:10.1155/2012/896473

    Google Scholar 

  • Forel A (1879) Études myrmécologiques en 1879 (deuxième partie [1re partie en 1878]). Bulletin de la Société Vaudoise des Sciences Naturelles 16:53–128

    Google Scholar 

  • Forel A (1886) Études myrmécologiques en 1886. Annales de la Société Entomologique de Belgique 30:131–215

    Google Scholar 

  • Forel A (1899) Formicidae. Biologia Centrali-Americana Hymenoptera 3:1–169

    Google Scholar 

  • Garcia FH, Wiesel E, Fischer G (2013) The ants of Kenya (Hymenoptera: Formicidae)-faunal overview, first species checklist, bibliography, accounts for all genera, and discussion on taxonomy and zoogeography. J East Afr Nat Hist Soc 101:127–222

    Article  Google Scholar 

  • Gomes LC, Pessali TC, Sales NG, Pompeu PS, Carvalho DC (2015) Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143:581–588

    Article  PubMed  Google Scholar 

  • Green DM (1996) The bounds of species: hybridization in the Bufo americanus group of North American toads. Israel J Zool 42:95–109

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series pp 95–98

  • Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hölldobler B, Wilson EO (1983) The evolution of communal nest-weaving in ants. Am Sci 71:490–499

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Jiménez-Soto E, Philpott SM (2015) Size matters: nest colonization patterns for twig-nesting ants. Ecol Evol 5:3288–3298

    Article  PubMed  PubMed Central  Google Scholar 

  • Ketterl J, Verhaagh M, Bihn JH, Brandão CRF, Engels W (2003) Spectrum of ants associated with Araucaria angustifolia trees and their relations to hemipteran trophobionts. Stud Neotrop Fauna E 38:199–206

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lanan MC, Dorhaus A, Bronstein JL (2011) The function of polydomy: the ant Crematogaster torosa preferentially forms new nests near food sources and fortifies outstations. Behav Ecol Sociobiol 65:959–968

    Article  Google Scholar 

  • Latreille PA (1802) Histoire naturelle des fourmis, et recueil de mémoires et d’observations sur les abeilles, les araignées, les faucheurs, et autres insectes, vol 16. Impr. Crapelet, Paris, p 445

    Book  Google Scholar 

  • Longino JT (2006) New species and nomenclatural changes for the Costa Rican ant fauna (Hymenoptera: Formicidae). Myrmecol Nachr 8:131–143

    Google Scholar 

  • Mackay WP (2004) The systematic and biology of the new world carpenter ants of the hyperdiverse genus Camponotus (Hymenoptera: Formicidae). http://www.utep.edu/leb/antgenera.htm. Accessed 4 Sep 2015

  • Marinho CG, Zanetti R, Delabie JH, Schlindwein MN, Ramos LDS (2002) Diversidade de formigas (Hymenoptera: Formicidae) da serapilheira em eucaliptais (Myrtaceae) e área de cerrado de Minas Gerais. Neotrop Entomol 31:187–195

    Article  Google Scholar 

  • Matta SLS, Morini MSC, Hilsdorf AWS (2013) Genetic relationship among Camponotus rufipes Fabricius (Hymenoptera: Formicidae) nests by RAPD molecular markers. Acta Sci Biol Sci 35:89–92

    Article  Google Scholar 

  • Mayr G (1861) Die europäischen Formiciden. Nach der analytischen Methode bearbeitet. C. Gerolds Sohn, Wien, p 80

    Book  Google Scholar 

  • Mayr G (1862) Myrmecologische Studien. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 12:649–776

    Google Scholar 

  • McGlynn TP (2012) The ecology of nest movement in social insects. Annu Rev Entomol 57:291–308

    Article  CAS  PubMed  Google Scholar 

  • Mentone TO, Diniz EA, Munhae CB, Bueno OC, Morini MSC (2011) Composição da fauna de formigas (Hymenoptera: Formicidae) de serapilheira em florestas semidecídua e de Eucalyptus spp., na região sudeste do Brasil. Biota Neotrop 11. ID Artigo: bn00511022011

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    Article  CAS  PubMed  Google Scholar 

  • Morini MSDC, Kamazuka N, Leung R, Suguituru SS, Da Silva LF (2006) Ant fauna (Hymenoptera: Formicidae) in Magnoliophyta native to the Atlantic Forest. Sociobiology 47:433–444

    Google Scholar 

  • Munhae CB, Bueno ZAFN, Morini MSC, Silva RR (2009) Composition of the ant fauna (Hymenoptera: Formicidae) in public squares in southern Brazil. Sociobiology 53:455–472

    Google Scholar 

  • Nakano MA, Feitosa RM, Moraes CO, Adriano LDC, Hengles EP, Longui EL, Morini MSC (2012) Assembly of Myrmelachista Roger (Formicidae: Formicinae) in twigs fallen on the leaf litter of brazilian Atlantic Forest. J Nat Hist 46:2103–2115

    Article  Google Scholar 

  • Nakano MA, Miranda VFO, Souza DRD, Feitosa RM, Morini MSC (2013) Occurrence and natural history of Myrmelachista Roger (Formicidae: Formicinae) in the Atlantic forest of southeastern Brazil. Rev Chil Hist Nat 86:169–179

    Google Scholar 

  • Ojha R, Jalali SK, Ali TM, Venkatesan T, Prosser SW, Kumar NK (2014) DNA barcoding of Indian ant species based on cox1 gene. Indian J Biotechnol 13:165–171

    CAS  Google Scholar 

  • Oliveira PS, Brandão CRF (1991) The ant community associated with extrafloral nectaries in the Brazilian cerrados. In: Huxley CR, Cutler DF (eds) Ant-plant interactions. Oxford Univ. Press, Oxford, pp 198–212

    Google Scholar 

  • Paknia O, Bergmann T, Hadrys H (2015) Some ‘ant’swers: application of a layered barcode approach to problems in ant taxonomy. Mol Ecol Resour. doi:10.1111/1755-0998.12395

    PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Powell S (2013) The role of beetles produced cavities as filter on the assembly of arboreal ant communities. In: XXI Simpósio de Mirmecologia, Fortaleza

  • R Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria. http://www.R-project.org

  • Ramalho MO, Martins C, Silva LMR, Martins VG, Bueno OC (2016) Molecular profile of the brazilian weaver ant Camponotus textor Forel, 1899 (Hymenoptera, Formicidae). Neotropical Entomol. doi:10.1007/s13744-016-0392-z

    Google Scholar 

  • Robson SK, Kohout RJ, Beckenbach AT, Moreau CS (2015) Evolutionary transitions of complex labile traits: silk weaving and arboreal nesting in Polyrhachis ants. Behav Ecol Sociobiol 69:449–458

    Article  Google Scholar 

  • Roger J (1861) Die Ponera-artigen Ameisen (Schluss). Berliner Entomologische Zeitschrift 5:1–54

    Google Scholar 

  • Ronque MU, Azevedo-Silva M, Mori GM, Souza AP, Oliveira OS (2015) Three ways to distinguish species: using behavioural, ecological, and molecular data to tell apart two closely related ants, Camponotus renggeri and Camponotus rufipes (Hymenoptera: Formicidae). Zool J Linn Soc-Lond. doi:10.1111/zoj.12303

    Google Scholar 

  • Santos JC, Del-Claro K (2009) Ecology and behaviour of the weaver ant Camponotus (Myrmobrachys) senex. J Nat Hist 43:1423–1435

    Article  Google Scholar 

  • Schremmer F (1979) Die nahezu unbekannte neotropische We-berameise Camponotus (Myrmobrachys) senex (Hymenoptera: Formicidae). Entomol Gen 5:363–378

    Google Scholar 

  • Silva RR, Silvestre R, Brandão CRF, Morini MSC, Delabie JHC (2015) Grupos tróficos e guildas em formigas poneromorfas. Poneromorfas do Brasil, In: Simpósio de Mirmecologia, Ilhéus 155-171

  • Silva-Brandão KL, Lyra ML, Freitas AVL (2009) Barcoding Lepidoptera: current situation and perspectives on the usefulness of a contentious technique. Neotropical Entomol 38:441–451

    Article  Google Scholar 

  • Smith F (1858) Catalogue of hymenopterous insects in the collection of the British Museum. Part VI. Formicidae. London: British Museum 216

  • Smith MA, Fisher BL, Hebert PD (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc B 360:1825–1834

    Article  CAS  Google Scholar 

  • Smith MA, Janzen DH, Hallwachs W, Longino JT (2015) Observations of Adelomyrmex (Hymenoptera: Formicidae) reproductive biology facilitated by digital field microscopy and DNA barcoding. Can Entomol 147:611–616

    Article  Google Scholar 

  • Souza DR, Fernandes TT, Nascimento JRO, Suguituru SS, Morini MSC (2012) Characterization of ant communities (Hymenoptera: Formicidae) in twigs in the leaf litter of the Atlantic rainforest and Eucalyptus trees in the southeast region of Brazil. Pysche. doi:10.1155/2012/532768

    Google Scholar 

  • Suguituru SS, Souza DRD, Munhae CDB, Pacheco R, Morini MSDC (2013) Diversidade e riqueza de formigas (Hymenoptera: Formicidae) em remanescentes de Mata Atlântica na Bacia Hidrográfica do Alto Tietê, SP. Biota Neotrop 13:1–8

    Article  Google Scholar 

  • Suguituru SS, Morini MSC, Feitosa RM, Silva RS (2015) Formigas do Alto Tietê. São Paulo, Canal6 450. http://canal6.com.br/formigas/. Accessed Sep 2015

  • Swofford D (1998) PAUP 4.0: phylogenetic analysis using parsimony. Smithsonian Institution

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulysséa MA, Brandão CR (2013) Ant species (Hymenoptera, Formicidae) from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records. Rev Bras Entomol 57:217–224

    Article  Google Scholar 

  • Vasconcelos HL, Delabie JHC (2000) Ground ant communities form central Amazonia forest fragments. In: Agosti D, Majer JD, Alonso LE, Schultz T (eds) Sampling ground-dwelling ants: case studies from world’s rain forests, vol 18. Curtin University School of Environmental Biology Bulletin, Perth, pp 59–69

    Google Scholar 

  • Wheeler WM (1915) On the presence and absence of co-coons among ants, the nest-spinning habits of the larvae and the significance of black cocoons among certain australian species. Ann Entomol Soc Am 8:323–342

    Article  Google Scholar 

  • Wheeler GC, Wheeler J (1953) The ant larvae of the subfamily Formicinae. Part II. Ann Entomol Soc Am 46:175–217

    Article  Google Scholar 

  • Yamamoto M, Del-Claro K (2008) Natural history and foraging behavior of the carpenter ant Camponotus sericeiventris Guérin, 1838 (Formicinae, Campotonini) in the Brazilian tropical savanna. Acta Ethol 11:55–65

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Kleber Del-Claro (Federal University of Uberlândia) for the help in collecting arboreal nests; Dr. Rodrigo Machado Feitosa (Federal University of Paraná, Paraná) and Dr. Jacques Hubert Charles Delabie (State University of Santa Cruz and Cocoa Research Center, Bahia), for the morphological identification of the species (Voucher #5692); FAPESP (process no. 2013/16861-5), CNPq (process no. 302363/2012-2) and CAPES Foundation (process no. 007343/2014-00), for their financial support; and SISBIO (case no. 45492) for the collecting license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela O. F. Ramalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, M.O.F., Santos, R.M., Fernandes, T.T. et al. “Cytochrome c oxidase I DNA sequence of Camponotus ants with different nesting strategies is a tool for distinguishing between morphologically similar species”. Genetica 144, 375–383 (2016). https://doi.org/10.1007/s10709-016-9906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9906-1

Keywords

Navigation