Skip to main content
Log in

Molecular identification of a cryptic species in the Amazonian predatory catfish genus Pseudoplatystoma (Bleeker, 1962) from Peru

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Pseudoplatystoma species are highly prized South American Pimelodid migratory catfishes. Until recently, their taxonomy was not clearly established, with discrepancies between morphological and molecular analyses. Here, Pseudoplatystoma species from the Peruvian Amazon were characterized at the molecular level from a sample representing the observed range of their color pattern variations in the study area. Analyses were performed using seven microsatellite loci for 103 specimens and, for part of them (52), using sequences of two regions of their mitochondrial genome [Cytochrome Oxidase subunit I (COI) and Control Region (CR)]. Factorial correspondence analysis and assignment tests based on microsatellite polymorphism showed that the specimens originally identified as P. punctifer belonged to two different gene pools highly differentiated from P. tigrinum. Morphological examination identified two different morphotypes (with and without black stripes), suggesting the existence of two distinct taxa within P. punctifer. This result was corroborated by the ML tree based on CR sequences, where all individuals but four clustered in a similar way as in the FCA and Bayesian assignment tests. For these four individuals, mitochondrial introgression or retention of ancestral polymorphism was likely. In contrast, the ML tree based on COI sequences showed that reciprocal monophyly was not yet achieved for this marker for the two P. punctifer taxa. The existence of three sympatric species of Pseudoplatystoma in the Peruvian Amazon is discussed in relation to their molecular characteristics, color patterns and ecology. Evolutionary scenarios regarding their divergence are hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnèse J-F, Zentz F, Legros O, Sellos D (2006) Phylogenetic relationships and phylogeography of the Killifish species of the subgenus Chromaphyosemion (Radda, 1971) in West Africa, inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 40:332–346

    Article  PubMed  Google Scholar 

  • Agudelo E, Salinas Y, Sanchez CL, Munoz-Sosa DL, Alonso JC, Arteaga ME, Rodriguez OJ, Anzola NR, Acosta LE, Nunez M, Valdes H (2000) Bagres de la Amazonia Colombiana: un Recurso sin Fronteras. SINCHI. Programa de Ecosistemas Acuaticos. Editorial Scipto Ltda.: Santa Fé de Bogota D.C., Colombia

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Akadémia Kiado, Budapest, pp 267–281

  • Albert JS, Reis RE (eds) (2011) Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley

    Google Scholar 

  • Aquilino S, Tango J, Fontanilla I, Pagulayan R, Basiao Z, Ong P, Quilang P (2011) DNA barcoding of the ichthyofauna of Taal Lake, Philippines. Mol Ecol Resour 11:612–619

    Article  PubMed  CAS  Google Scholar 

  • Ardura A, Pola IG, Ginuino I, Gomes V, Garcia-Vásquez E (2010) Application of barcoding to Amazonian commercial fish labelling. Food Res Int 43:1549–1552

    Article  Google Scholar 

  • Asgharian H, Sahafi HH, Ardalan AA, Shekarriz S, Elahi E (2011) Cytochrome c oxidase subunit 1 barcode data of fish of the Nayband National Park in the Persian Gulf and analysis using meta-data flag several cryptic species. Mol Ecol Resour 11:461–472

    Article  PubMed  Google Scholar 

  • Baras E, Montalvan Naranjos GV, Silva del Aguila DV, Koo FC, Dugué R, Chávez C, Duponchelle F, Renno J-F, García-Dávila CC, Nuñez J (2011a) Ontogenetic variation of food intake and gut evacuation rate in larvae of the doncella Pseudoplatystoma punctifer, as measured using a non-destructive method. Aquac Res 24:379–390

    Google Scholar 

  • Baras E, Silva del Aguila DV, Montalvan Naranjos GV, Dugué R, Koo FC, Duponchelle F, Renno J-F, García-Dávila C, Nuñez J (2011b) How many meals a day to minimize cannibalism when rearing larvae of the Amazonian catfish Pseudoplatystoma punctifer? The cannibal’s point of view. Aquat Living Resour 24:379–390

    Article  Google Scholar 

  • Barthem R, Goulding M (1997) The catfish connection. Ecology, migration and conservation of Amazon predators. Columbia University Press, New York

    Google Scholar 

  • Barthem R, Goulding M (2007) Un ecosistema inesperado: la Amazonía revelada por la pesca. Museu Paraense Emilio Goeldi, Amazon Conservation Association (ACA), Lima

  • Bartley DM, Rana K, Immink AJ (2000) The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fisher 10:325–337

    Article  Google Scholar 

  • Belkhir K, Bonhomme F (2002) PARTITION ML: a maximum likelihood estimation of the best partition of a sample into panmictic units. Université Montpellier 2, Montpellier, France

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université Montpellier II

  • Buitrago-Suarez UA, Burr BM (2007) Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa 1512:1–38

    Google Scholar 

  • Cañas CM (2000) Evaluación de los recursos pesqueros en la Provincia de Tambopata, Madre de Dios (Julio 1995-Diciembre 1998): Conservación Internacional-Peru, p 68

  • Carvalho-Costa LF, Piorski NM, Willis SC, Galetti PM Jr, Ortí G (2011) Molecular systematics of the neotropical shovelnose catfish genus Pseudoplatystoma Bleeker 1862 based on nuclear and mtDNA markers. Mol Phylogenet Evol 59:177–194

    Article  PubMed  CAS  Google Scholar 

  • Castelnau Fd (1855) Animaux nouveaux ou rares recueillis pendant l’expedition dans les parties centrales de l’Amerique du Sud :de Rio de Janeiro a Lima, et de Lima au Para : exécutée par ordre du gouvernement Français pendant les années 1843 à 1847. P. Bertrand, París

    Google Scholar 

  • Chong SSC, Khoo HW (1987) Abbreviated larval development of the freshwater prawn, Macrobrachium pilimanus (De Man, 1879) (Decapoda, Palaemonidae), reared in the laboratory. J Nat Hist 21:763–774

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Frankham R, Ballou J, Briscoe D (2004) A primer of conservation genetics. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Garcia A, Tello S, Vargas G, Duponchelle F (2009) Patterns of commercial fish landings in the Loreto region (Peruvian Amazon) between 1984 and 2006. Fish Physiol Biochem 35:53–67

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrington RC, Near TJ (2012) Phylogenetic and coalescent strategies of species delimitation in snubnose darters (Percidae: Etheostoma). Syst Biol 61:63–79

    Article  PubMed  Google Scholar 

  • Hartl D, Clark A (1997) Principles of population genetics. Sinauer Associates, Inc. Publishers Sunderland, Massachussetts

    Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. P Natl Acad Sci USA 101:14812–14817

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. Public Libr Sci 2:1657–1663

    CAS  Google Scholar 

  • Hoorn C, Guerreo J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–240

    Article  Google Scholar 

  • Hubert N, Renno J-F (2006) Historical biogeography of South American freshwater fishes. J Biogeogr 33(8):1414–1436

    Google Scholar 

  • Hubert N, Duponchelle F, Nuñez J, Paugy D, Garcia-Davila C, Renno J-F (2007) Phylogeography of the piranhas genera Serrasalmus and Pygocentrus implications for the diversification of the Neotropical Ichtyofauna. Mol Ecol 16:2115–2136

    Article  PubMed  CAS  Google Scholar 

  • Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Bernatchez L (2008a) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3:e2490

    Article  PubMed  Google Scholar 

  • Hubert N, Torrico JP, Bonhomme F, Renno J-F (2008b) Species polyphyly and mtDNA introgression among three Serrasalmus sister-species. Mol Phylogenet Evol 46:375–381

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science. New Ser 220(4598):671–680

    CAS  Google Scholar 

  • Lakra WS, Verma MS, Goswami M, Lal KK, Mohindra V, Punia P, Gopalakrishnan A, Singh KV, Ward RD, Hebert P (2011) DNA barcoding Indian marine fishes. Mol Ecol Resour 11:60–71

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Loubens G, Panfili J (2000) Biologie de Pseudoplatystoma fasciatum et P. tigrinum (Teleostei: Pimelodidae) dans le bassin du Mamoré. Ichthyol Explor Freshw 11:13–34

    Google Scholar 

  • Lucas MC, Baras E (2001) Migration of freshwater fishes. Blackwell Science Ltd., Oxford

    Book  Google Scholar 

  • Lundberg JG (1998) The temporal context for diversification of Neotropical fishes. In: Malabarba LR, Reis RE, Vari RP, Lucena CAS, Lucena ZMS (eds) Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, from the view point of a zoologist. Columbia University Press, USA

    Google Scholar 

  • Meldgaard T, Crivelli A, Jesensek D, Poizat G, Rubin J-F, Berrebi P (2007) Hybridization mechanisms between the endangered marble trout (Salmo marmoratus) and the brown trout (Salmo trutta) as revealed by in-stream experiments. Biol Conserv 136:602–611

    Article  Google Scholar 

  • Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–1850

    Article  PubMed  CAS  Google Scholar 

  • Nuñez J, Castro D, Fernández C, Dugué R, Chu-Koo F, Duponchelle F, García C, Renno J-F (2011) Hatching rate and larval growth variations in Pseudoplatystoma punctifer: maternal and paternal effects. Aquac Res 42:764–775

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    Article  PubMed  Google Scholar 

  • Paradis E (2006) Analysis of phylogenetics and evolution with R. Springer, New York

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reid S (1983) La biología de los bagres rayados Pseudoplatystoma fasciatum y P. tigrinum en la cuenca del rio Apure, Venezuela. Revis UNELLEZ Cien Tecnol 1:13–41

    Google Scholar 

  • Renno J-F, Hubert N, Torrico JP, Duponchelle F, Nunez J, Garcia-Davila C, Willis S, Desmarais E (2006) Phylogeography of Cichla (Cichlidae) in the Upper Madera basin (Bolivian Amazon). Mol Phylogenet Evol 41:503–510

    Article  PubMed  CAS  Google Scholar 

  • Revaldaves E, Pereira L, Foresti F, Oliveira C (2005) Isolation and characterization of microsatellite loci in Pseudoplatystoma corruscans (Siluriformes: Pimelodidae). Mol Ecol Notes 5:463–465

    Article  CAS  Google Scholar 

  • Rocha-Olivares A, Fleeger JW, Foltz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18(6):1088–1102

    Article  PubMed  CAS  Google Scholar 

  • Römer U (2001) Influence of temperature on fertility, growth rates, and reproductive success on selected species of Apistogramma (Teleostei, Cichlidae). Verhandlungen der Gesellschaft fuer Ichthyologie 2:87–106

    Google Scholar 

  • Römer U (2006) Cichlid Attlas Volume 2. Mergus Verlag, Melle

    Google Scholar 

  • Römer U, Beisenherz W (2006) Are sexual behaviour and other traits of behaviour in Apistogramma species (Teleostei: Cichlidae) suitable for taxonomic classification? In: Greven H, Riehl R (eds) Verhalten der Aquarienfische 2. Tetra-Verlag, Berlin, pp 147–158

    Google Scholar 

  • Römer U, Hahn I (2008) Apistogramma barlowi: description of a new species of facultative mouth-breeding cichlid species (Teleostei: Perciformes: Geophaginae) from Northern Peru. Vert Zool 58:49–66

    Google Scholar 

  • Serra-Pereira B, Moura T, Griffiths A, Gordo L, Figueiredo I (2010) Molecular barcoding of skates (Chondrichthyes: Rajidae) from the southern Northeast Atlantic. Zool Scr 40:76–84

    Article  Google Scholar 

  • Smith PJ, Steinke D, McMillan PJ, Stewart AL, McVeagh SM, Diaz de Astarloa JM, Welsford D, Ward RD (2011) DNA barcoding highlights a cryptic species of grenadier Macrourus in the Southern Ocean. J Fish Biol 78:355–365

    Article  PubMed  CAS  Google Scholar 

  • Smouse PE, Waples RS, Tworek JA (1990) A mixed fishery model for use with incomplete source population data. Can J Fish Aquat Sci 47:620–634

    Article  Google Scholar 

  • Steinke D, Zemlak TS, Hebert PDN (2009) Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE 4:e6300

    Article  PubMed  Google Scholar 

  • Tello S, Bayley PB (2001) La pesquería comercial de Loreto con énfasis en el análisis de la elación entre captura y esfuerzo pesquero de la flota comercial de Iquitos, cuenca del Amazonas (Perú). Folia Amazónica 12:123–139

    Google Scholar 

  • Toffoli D, Hrbek T, Góes de Araújo ML, Pinto de Almeida M, Charvet-Almeida P, Farias I (2008) A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genet Mol Biol 31(1 suppl):324–336

    Article  CAS  Google Scholar 

  • Torrico J-P, Hubert N, Desmarais E, Duponchelle F, Nuñez Rodriguez J, Montoya-Burgos J, Garcia-Davila C, Carvajal F, Grajales AA, Bonhomme F, Renno J-F (2009) Molecular phylogeny of the Pseudoplatystoma (Bleeker, 1862): biogeographic and evolutionary implications. Mol Phylogenet Evol 51:588–594

    Article  PubMed  CAS  Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISHBOL. J Fish Biol 74:329–356

    Article  PubMed  CAS  Google Scholar 

  • Winemiller KO (2005) Floodplain river food webs: generalizations and implications for fisheries management. In: Welcomme RL, Petr T (eds) Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries Phnom Penh. Mekong River Commission, Cambodia, pp 285–312

    Google Scholar 

  • Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movements on tropical river food webs. J Fish Biol 53:267–296

    Article  Google Scholar 

  • Wong LL, Peatman E, Lu J, Kucuktas H, He S, Zhou C, Na-nakorn U, Liu Z (2011) DNA barcoding of catfish: species authentication and phylogenetic assessment. PLoS ONE 6:e17812

    Article  PubMed  CAS  Google Scholar 

  • Zhang JB, Hanner R (2011) DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochem Syst Ecol 39:31–42

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out within the Laboratoire Mixte International “Evolution et Domestication de l’Ichtyofaune Amazonienne” (LMI-EDIA) developed by the Instituto de Investigaciones de la Amazonia Peruana (IIAP) and the Institut Français de Recherche pour le Développement (IRD), both of which are part of the network Red de Investigación sobre la Ictiofauna Amazónica (RIIA http://www.riiaamazonia.org/). Financial support was provided by INCAGRO (Inovación para el Agro Peruano, subproject “Breeding and intensive production of fingerlings of Doncella Pseudoplatystoma fasciatum (Linnaeus, 1776) in the Peruvian Amazon”), IIAP and IRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Renno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Dávila, C., Duponchelle, F., Castro-Ruiz, D. et al. Molecular identification of a cryptic species in the Amazonian predatory catfish genus Pseudoplatystoma (Bleeker, 1962) from Peru. Genetica 141, 347–358 (2013). https://doi.org/10.1007/s10709-013-9734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9734-5

Keywords

Navigation