Skip to main content
Log in

Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In the beetle genus Tribolium, satellite DNAs comprise a significant amount of pericentromeric heterochromatin and are characterized by rapid turnover resulting in species specific profiles. In the present work we characterize the major pericentromeric satellite DNA TCAST of the beetle T. castaneum and analyse its population dynamics. Using direct sequencing of genomic PCR products we show that the TCAST satellite exists in the form of two related subfamilies: Tcast1a and Tcast1b that make up 20 and 15% of the genome, respectively. Tcast1a and Tcast1b have consensus sequences of 377 and 362 bp respectively, share an average similarity of 79% and are characterized by a divergent, subfamily specific region of approximately 100 bp. The two subfamilies are prevalently organized in the interspersed form, although a portion exists in the form of homogenous tandem arrays composed of only Tcast1a or Tcast1b. The pattern of restriction enzyme digestion indicates that Tcast1a and Tcast1b are organized in composite higher order repeats. Comparison of sequence variability of Tcast1a and Tcast1b among ten strains reveals a difference in the frequency of particular mutations present at some positions. However, no difference in the organization and in the amount of subfamilies was detected among strains. The results show that direct genomic sequencing can be a useful method for the detection of population specific features of satellite DNA. In the case of TCAST satellite DNA, changes in the mutational profiles seem to represent the first step in the genesis of a population specific satellite profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez-Fuster A, Juan C, Petitpierre E (1991) Genome size in Tribolium flour-beetles: inter- and intraspecific variation. Genet Res 58:1–5

    Article  Google Scholar 

  • Bachmann L, Venanzetti F, Sbordoni V (1994) Characterization of a species-specific satellite DNA of Dolichopoda schiavazzi (Orthoptera, Rhaphidophoridae) cave crickets. J Mol Evol 39:274–281

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177:1277–1290

    Article  PubMed  CAS  Google Scholar 

  • Caraballo DA, Belluscio PM, Rossi MA (2010) The library model for satellite DNA evolution: a case study with the rodents of the genus Ctenomys (Octodontidae) from the Ibera marsh, Argentina. Genetica 138:1201–1210

    Article  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • de Franco FF, Kuhn GC, Sene FM, Manfrin MH (2006) Conservation of pBuM-2 satellite DNA sequences among geographically isolated Drosophila gouveai populations from Brazil. Genetica 128:287–295

    Article  PubMed  CAS  Google Scholar 

  • Dover G (2002) Molecular drive. Trends Genet 18:587–589

    Article  PubMed  Google Scholar 

  • Durajlija Žinić S, Ugarković Đ, Cornudella L, Plohl M (2000) A novel interspersed type of organization of satellite DNAs in Tribolium madens heterochromatin. Chromosome Res 8:201–212

    Article  Google Scholar 

  • Elder FJ, Turner BJ (1994) Concerted evolution at the population level: pupfish HindIII satellite DNA sequences. Proc Natl Acad Sci USA 91:994–998

    Article  PubMed  CAS  Google Scholar 

  • Ellingsen A, Slamovits Ch, Rossi MS (2007) Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidaer, Rodentia). Gene 392:283–290

    Article  PubMed  CAS  Google Scholar 

  • Feliciello I, Picariello O, Chinali G (2005) The first characterization of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. Gene 349:153–164

    Article  PubMed  CAS  Google Scholar 

  • Feliciello I, Picariello O, Chinali G (2006) Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Gene 383:81–92

    Article  PubMed  CAS  Google Scholar 

  • Hinton HE (1948) A synopsis of the genus Tribolium Macleay with some remarks on the evolution of its species groups. Bull Entomol Res 39:13–55

    Article  PubMed  CAS  Google Scholar 

  • Juan C, Petitpierre E (1991) Chromosome number and sex-determining system in Tenebrionidae (Coleoptera). Advances in coleopterology. AEC Barcelona, pp 167–176

  • Kuhn GC, Sene FM (2004) Characterization and interpopulation variability of a complex HpaI satellite DNA of Drosophila seriema (repleta group). Genetica 121:241–249

    Article  PubMed  CAS  Google Scholar 

  • Kuhn GC, Franco FF, Silva WA Jr, Martinez-Rossi NM, Sene FM (2003) On the pBuM189 satellite DNA variability among South American populations of Drosophila buzzatti. Hereditas 139:161–166

    Article  PubMed  Google Scholar 

  • Lorite P, Carrillo JA, Garneria I, Petitpierre E, Palomeque T (2002) Satellite DNA in the elm leaf beetle Xanthogaleruca luteola (Coleoptera, Chrysomelidae): characterization, interpopulation analysis and chromosomal location. Cytogenet Genome Res 98:302–307

    Article  PubMed  CAS  Google Scholar 

  • Malik H (2009) The centromere-drive hypothesis: a simple basis for centromere complexity. Prog Mol Subcell Biol 48:33–52

    Article  PubMed  CAS  Google Scholar 

  • Meštrović N, Plohl M, Mravinac B, Ugarković Ð (1998) Evolution of satellite DNAs from the genus Palorus—experimental evidence for the ‘library’ hypothesis. Mol Biol Evol 15:1062–1068

    PubMed  Google Scholar 

  • Mravinac B, Plohl M, Ugarković Đ (2004) Conserved patterns in the evolution of Tribolium satellite DNAs. Gene 332:169–177

    Article  PubMed  CAS  Google Scholar 

  • Mravinac B, Plohl M, Ugarković Đ (2005) Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 61:542–550

    Article  PubMed  CAS  Google Scholar 

  • Palomeque T, Lorite P (2008) Satellite DNA in insects: a review. Heredity 100:564–573

    Article  PubMed  CAS  Google Scholar 

  • Picariello O, Feliciello I, Bellinello R, Chinali G (2002) S1 satellite DNA as a taxonomic marker in brown frogs: molecular evidence that Rana graeca graeca and Rana graeca italica are different species. Genome 45:63–70

    Article  PubMed  CAS  Google Scholar 

  • Plohl M, Lucijanić-Justić V, Ugarković Đ, Petitpierre E, Juan C (1993) Satellite DNA and heterochromatin of the flour beetle Tribolium confusum. Genome 36:467–475

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Tribolium Genome Sequencing Consortium et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  PubMed  CAS  Google Scholar 

  • Stephan W (1989) Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol 6:198–212

    PubMed  CAS  Google Scholar 

  • Stephan W, Cho S (1994) Possible role of natural selection in the formation of tandem—repetitive noncoding DNA. Genetics 136:333–341

    PubMed  CAS  Google Scholar 

  • Strachan T, Webb D, Dover GA (1985) Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J 4:1701–1708

    PubMed  CAS  Google Scholar 

  • Ugarković Đ (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    Article  PubMed  Google Scholar 

  • Ugarković Đ (2009) Centromere-competent DNA: structure and evolution. Prog Mol Subcell Biol 48:53–76

    Article  PubMed  Google Scholar 

  • Ugarković Đ, Plohl M (2002) Variation in satellite DNA profiles–causes and effects. EMBO J 21:5955–5959

    Article  PubMed  Google Scholar 

  • Ugarković Đ, Podnar M, Plohl M (1996) Satellite DNA of the red flour beetle Tribolium castaneum—comparative study of satellites from the genus Tribolium. Mol Biol Evol 13:1059–1066

    PubMed  Google Scholar 

  • Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115:553–567

    PubMed  CAS  Google Scholar 

  • Wang S, Lorenzen MD, Beeman RW, Brown SJ (2008) Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9:R61

    Article  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by EU FP6 Marie Curie Transfer of Knowledge Grant MTKD-CT-2006-042248 and grant 00982604 from the Croatian Ministry of Science. Isidoro Feliciello and Gianni Chinali were Marie Curie Fellows at Ruđer Bošković Institute. We are grateful to Dani Dipietro for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Đurđica Ugarković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feliciello, I., Chinali, G. & Ugarković, Đ. Structure and population dynamics of the major satellite DNA in the red flour beetle Tribolium castaneum . Genetica 139, 999–1008 (2011). https://doi.org/10.1007/s10709-011-9601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9601-1

Keywords

Navigation