Skip to main content
Log in

Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions

  • Review Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The evolution of molecules, developmental circuits, and new species are all characterized by the accumulation of incompatibilities between ancestors and descendants. When specific interactions between components are necessary at any of these levels, this requires compensatory coevolution. Theoretical treatments of compensatory evolution that only consider the endpoints predict that it should be rare because intermediate states are deleterious. However, empirical data suggest that compensatory evolution is common at all levels of molecular interaction. A general solution to this paradox is provided by plausible neutral or nearly neutral intermediates that possess informational redundancy. These intermediates provide an evolutionary path between coadapted allelic combinations. Although they allow incompatible end points to evolve, at no point was a deleterious mutation ever in need of compensation. As a result, what appears to be compensatory evolution may often actually be “pseudocompensatory.” Both theoretical and empirical studies indicate that pseudocompensation can speed the evolution of intergenic incompatibility, especially when driven by adaptation. However, under strong stabilizing selection the rate of pseudocompensatory evolution is still significant. Important examples of this process at work discussed here include the evolution of rRNA secondary structures, intra- and inter-protein interactions, and developmental genetic pathways. Future empirical work in this area should focus on comparing the details of intra- and intergenic interactions in closely related organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atchley W, Wollenberg K, Fitch W, Terhalle W, Dress A (2000). Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 17:164–178

    PubMed  CAS  Google Scholar 

  • Barker J, Moth J (2001). Linkage maps of D. simulans: an update of Sturtevant (1929) with additional loci. Dros Inf Serv 84:205–206

    Google Scholar 

  • Barton N. (1989). The divergence of a polygenic system subject to stabilizing selection, mutation, and drift. Gent Res Camb 54:59–77

    Article  CAS  Google Scholar 

  • Carter A, Wagner G (2002). Evolution of functionally conserved enhancers can be accelerated in large populations: a population-genetic model. Proc R Soc Lond B 269:953–960

    Article  Google Scholar 

  • Charlesworth D. (2000). How can two-gene models of self-incompatibility generate new specificities? Plant Cell 12:309–310

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Grobler J, Hurley J, Dean A (1996). Second-site suppression of regulatory phosphorylation in Escherichia coli isocitrate dehydrogenase. Protein Sci 5:287–295

    Article  PubMed  CAS  Google Scholar 

  • Crick F, Barnett L, Brenner S, Watts-Tobin R. (1961). General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Fay D, Large E, Han M, Darland M (2003). lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development 130:3319–3330

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett F, Amores A, Yan Y, Postlethwait J (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Fraser H, Hirsh A, Steinmetz L, Scharfe C, Feldman M (2002). Evolutionary rate in the protein interaction network. Science 296:750–752

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S. (1997). Evolution and speciation on holey adaptive landscapes. Trends Ecol Evol 12:307–312

    Article  Google Scholar 

  • Graustein A, Gaspar JM, Walters JR, Palopoli MF (2002). Levels of DNA polymorphism vary with mating system in the nematode genus Caenorhabditis. Genetics 161:99–107

    PubMed  CAS  Google Scholar 

  • Gutell R, Lee J, Cannone J (2002). The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12:301–310

    Article  PubMed  CAS  Google Scholar 

  • Haag E, Ackerman A (2005) Intraspecific variation in fem-3and tra-2, two rapidly coevolving nematode sex-determining genes. Gene pp TBA

  • Haag E, Kimble J (2000). Regulatory elements required for development of C. elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics 155:105–116

    PubMed  CAS  Google Scholar 

  • Haag E, Molla M (2005) Compensatory evolution of interacting gene products through multifunctional intermediates. Evolution 59:1620–1632

    Google Scholar 

  • Haag E, True J (2001). From mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55:1077–1084

    PubMed  CAS  Google Scholar 

  • Haag E, Wang S, Kimble J (2002). Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12:2035–2041

    Article  PubMed  CAS  Google Scholar 

  • Haldane J. (1931). A mathematical theory of natural selection. Part VIII: metastable populations. Proc Camb Phil Soc 27:137–143

    Article  Google Scholar 

  • Haldane J (1932). The Causes of Evolution. Cornell Univ. Press, Ithaca, NY

    Google Scholar 

  • Hellberg M, Moy G, Vacquier V (2000). Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein. Mol Biol Evol 17:458–466

    PubMed  CAS  Google Scholar 

  • Hickson R, Simon C, Cooper A, Spicer G, Sullivan J, Penny D (1996). Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Mol Biol Evol 13:150–169

    PubMed  CAS  Google Scholar 

  • Higgs P (1998). Compensatory neutral mutations and the evolution of RNA. Genetica 102/103:91–101

    Article  CAS  Google Scholar 

  • Hill R, Carvalho C, Salogiannis J, Schlager B, Pilgrim D, Haag E (2006) Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev Cell 10:531–538

    Google Scholar 

  • Hirsch N, Zimmerman L, Grainger R (2002). Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225:422–433

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin J, Brenner S (1977). Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86:275–287

    PubMed  CAS  Google Scholar 

  • Johnson N, Porter A (2000). Speciation via parallel, directional selection on regulatory genetic pathways. J Theor Biol 205:527–542

    Article  PubMed  CAS  Google Scholar 

  • Johnson NA, Porter AH (2006) Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica (in␣press)

  • Jordan I, Wolf Y, Koonin E (2003). No simple dependence between protein evolution rate and the number of protein–protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1–8

    Article  PubMed  Google Scholar 

  • Kachroo A, Nasrallah M, Nasrallah J (2002). Self-incompatibility in the Brassicaceae: receptor-ligand signaling and cell–cell communication. Plant Cell 14(Suppl): S227–S238

    PubMed  CAS  Google Scholar 

  • Kachroo A, Schopfer C, Nasrallah M, Nasrallah J (2001). Allele-specific receptor-ligand interactions in Brassica self-incompatibility. Science 293:1824–1826

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution, Cambridge University Press

  • Kimura M (1985). The role of compensatory neutral mutations in molecular evolution. J Genet 64:7–19

    Article  CAS  Google Scholar 

  • Kondrashov A, Sunyaev S, Kondrashov F (2002). Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99:14878–14883

    Article  PubMed  CAS  Google Scholar 

  • Kresge N, Vacquier V, Stout D (2001). Abalone lysin: the dissolving and evolving sperm protein. BioEssays 23:95–103

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara PE (1996). Interspecies comparison reveals evolution of control regions in the nematode sex-determining gene tra-2. Genetics 144:597–607

    PubMed  CAS  Google Scholar 

  • Kuwabara PE, Shah S (1994). Cloning by synteny: identifying C. briggsae homologues of C. elegans genes. Nucleic Acids Res 22:4414–4418

    Article  PubMed  CAS  Google Scholar 

  • LaMunyon C, Ward S (1997). Increased competitiveness of nematode sperm bearing the male X chromosome. Proc Natl Acad Sci USA 94:185–189

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Bergman C, Patel N, Kreitman M (2000). Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403:564–567

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Patel N, Kreitman M (1998). Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development 125:949–958

    PubMed  CAS  Google Scholar 

  • Lum D, Kuwabara P, Zarkower D, Spence A (2000). Direct protein–protein interaction between the intracellular domain of TRA-2 and the transcription factor TRA-1A modulates feminizing activity in C. elegans. Genes Dev 14:3153–3165

    PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000). The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001). The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    PubMed  CAS  Google Scholar 

  • Matton D, Luu D, Xike Q, Bertrand C, Morse D, Cappadocia M (1999). The production of an S-RNase with dual specificity suggests a novel hypothesis for the generation of new S-alleles. Plant Cell 11:2087–2097

    Article  PubMed  CAS  Google Scholar 

  • Mehra A, Gaudet J, Heck L, Kuwabara PE, Spence AM (1999). Negative regulation of male development in Caenorhabditis elegans by a protein–protein interaction between TRA-2A and FEM-3. Genes Dev 13:1453–1463

    PubMed  CAS  Google Scholar 

  • Michalakis Y, Slatkin M (1996). Interaction of selection and recombination in the fixation of negative-epistatic genes. Genet Res Camb 67:257–269

    CAS  Google Scholar 

  • Morosyuk S, Lee K, Santalucia JJ, Cunningham P (2000). Structure and function of the conserved 690 hairpin in Escherichia coli 16S ribosomal RNA: analysis of the stem nucleotides. J Mol Biol 300:113–126

    Article  PubMed  CAS  Google Scholar 

  • Muse S (1995). Evolutionary analyses of DNA sequences subject to constraints of secondary structure. Genetics 139:1429–1439

    PubMed  CAS  Google Scholar 

  • Phillips P (1996). Waiting for a compensatory mutation: phase zero of the shifting-balance process. Genet Res Camb 67:271–283

    CAS  Google Scholar 

  • Phillips P, Otto S, Whitlock M (2000) Beyond the Average. In: Wolf J, Brodie III ED, Wade MJ (eds) Epistasis and the Evolutionary Process. Oxford University Press, Oxford, pp20–38

  • Poteete A, Dao-Pin S, Nicholson H, Matthews B (1991). Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry 30:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Rockman M, Wray G (2002). Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19:1991–2004

    PubMed  CAS  Google Scholar 

  • Romano L, Wray G (2003). Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting componenets of transcriptional regulation. Development 130:4187–4199

    Article  PubMed  CAS  Google Scholar 

  • Rousset F, Pelandakis M, Solignac M (1991). Evolution of compensatory substitutions through G:U intermediate stat in Drosophila rRNA. Proc Natl Acad Sci USA 88:10032–10036

    Article  PubMed  CAS  Google Scholar 

  • Schierup M, Mable B, Awadalla P, Charlesworth D (2001) Identification and characterization of a polymorphic receptor kinase gene linked to the self-incompatibility locus of Arabidopsis lyrata. Genetics 158:387–399

    PubMed  CAS  Google Scholar 

  • Srinivasan J, Sinz W, Jesse T, Wiggers-Perebolte L, Jansen K, Buntjer J, van der Meulen M, Sommer R (2003) An integrated physical and genetic map of the nematode Pristionchus pacificus. Mol Genet Genomics 269:715–722

    Article  PubMed  CAS  Google Scholar 

  • Stephan W (1996) The rate of compensatory evolution. Genetics 144:419–426

    PubMed  CAS  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181

    Article  PubMed  CAS  Google Scholar 

  • Stothard P, Pilgrim D (2003) Sex determination gene and pathway evolution in nematodes. BioEssays 25:221–231

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant A (1929) The genetics of Drosophila simulans. Carnegie Inst Wash Publ 339:50–61

    Google Scholar 

  • Swanson W, Vacquier V (1995) Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc Natl Acad Sci USA 92:4957–4961

    Article  PubMed  CAS  Google Scholar 

  • Swanson W, Vacquier V (2002) The rapid evolution of reproductive proteins. Nature Rev Gen 3:137–144

    Article  CAS  Google Scholar 

  • Tamarina N, Ludwig M, Richmond R (1997) Divergent and conserved features in the spatial expression of the Drosophila pseudoobscura esterase-5B gene and the esterase-6 gene of Drosophila melanogaster. Proc Natl Acad Sci USA 94:7735–7741

    Article  PubMed  CAS  Google Scholar 

  • True J, Haag E (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  PubMed  CAS  Google Scholar 

  • Uyenoyama M, Newbigin E (2000) Evolutionary dynamics of dual-specificity self-incompatibility alleles. Plant Cell 12:310–312

    Article  PubMed  CAS  Google Scholar 

  • Uyenoyama M, Zhang Y, Newbigin E (2001) On the origin of self-incompatibility haplotypes: transition through self-compatible intermediates. Genetics 157:1805–1817

    Google Scholar 

  • Wang S, Kimble J (2001) The TRA-1 transcription factor binds TRA-2 to regulate sexual fates in Caenorhabditis elegans. EMBO J 20:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Ito A, Takada Y, Ninomiya C, Kakizakia T, Takahata Y, Hatakeyama K, Hinata K, Suzuki G, Takasaki T, Satta Y, Shiba H, Takayama S, Isogai A (2000) Highly divergent sequences of the pollen self-incompatibility (S) gene in class-I S haplotypes of Brassica campestris (syn. rapa) L. FEBS Lett 473:139–144

    Article  PubMed  CAS  Google Scholar 

  • Waterston R, Lindblad-Toh K, Birney E, a. m. o. o. t. M.G.S. Consortium. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Wilkins A (2002) The Evolution of Developmental Pathways. Sinauer, Sunderland, MA

    Google Scholar 

  • Wollenberg K, Atchley W (2000) Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci USA 97:3288–3291

    Article  PubMed  CAS  Google Scholar 

  • Wray G, Hahn M, Abouheif E, Balhoff J, Pizer M, Rockman M, Romano L (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Rosenberg H (2002) Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates. Proc Natl Acad Sci USA 99:5486–5491

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1965) The evolution of hemoglobin. Sci Am. 212:110–118

    Google Scholar 

Download references

Acknowledgements

The author thanks Arlin Stoltzfus for excellent conversations, and Allan Force and Norman Johnson for sharing relevant unpublished manuscripts. This work was supported from startup funds from the University of Maryland and an RE Powe, Jr. Faculty Enhancement Award from the Oak Ridge Associated Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Haag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haag, E.S. Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 129, 45–55 (2007). https://doi.org/10.1007/s10709-006-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0032-3

Keywords

Navigation