Skip to main content
Log in

Geographic characteristics of a network interdiction problem

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

The protection of critical infrastructure from natural and intentional events is a key component of any national security agenda. Protection schemes need to be readily identifiable and adaptable to complex changing environments. In this paper, we identify strategic geographic characteristics that impact the location of detection resources (e.g. sensors) towards the defense of regional critical infrastructure. Specifically, we seek to estimate the relationship between the results of a variation of the traditional shortest path network interdiction problem and geographical characteristics of the transportation infrastructure and the urban environment. Experiments conducted on three distinct transportation networks of different shapes and granularities (New York City—grid, Houston—radial, Boston—hybrid) underline the importance of geographic characteristics such as the proximity to resource location, attacker entry points as well as network coverage. Insights gained from this work are relevant to policy and decision makers to facilitate the development of analytical and decision-support tools capable of identifying resource allocation strategies. We discuss a heuristic-based framework that prioritizes the selection of detection resources, reflecting the importance of geographic characteristics. The findings underline the importance of geographical characteristics for the allocation of resources in a regional setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bard, J. (1998). Practical bilevel optimization: Algorithms and applications. Boston: Kluwer.

    Book  Google Scholar 

  • Bayrak, H., & Baily, M. (2008). Shortest path network interdiction with asymmetric information. Networks, 52(3), 133–140.

    Article  Google Scholar 

  • Brown, G., Carlyle, M., Salmeron, J., & Wood, K. (2006). Defending critical infrastructure. Interfaces, 36(6), 530–544.

    Article  Google Scholar 

  • Cameron, A., & Trivedi, P. (1998). Regression analysis of count data. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Church, R., & ReVelle, C. S. (1976). Theoretical and computational links between the p-median location set-covering and the maximal covering location problem. Geographical Analysis, 8(4), 406–415.

    Article  Google Scholar 

  • Church, R. L., & Scaparra, M. P. (2007). Protecting critical assets: The r-interdiction median problem with fortification. Geographical Analysis, 39(2), 129–146.

    Article  Google Scholar 

  • Church, R., Scaparra, M. P., & Middleton, R. S. (2004). Identifying critical infrastructure: The median and covering facility interdiction problems. Annals of the Association of American Geographers, 94(3), 491–502.

    Article  Google Scholar 

  • Cova, T., & Conger, S. (2003). Transportation hazards. In M. Kutz (Ed.), Transportation engineer’s handbook.

  • Delmelle, E., Shuping, L., & Murray, A. T. (2012). Identifying bus stop redundancy: A GIS-based spatial optimization approach. Computers, Environment and Urban Systems, 36(5), 445–455.

    Article  Google Scholar 

  • Densham, P., & Rushton, G. (1992). A more efficient heuristic for solving large p-median problems. Papers in Regional Science: The Journal of the RSAI, 71(3), 307–329.

    Article  Google Scholar 

  • Garcia, M. L. (2008). Design and evaluation of physical protection systems. Butterworth-Heinemann.

  • George, R. (2008). Critical infrastructure protection. International Journal of Critical Infrastructure Protection, 1(1), 4–5.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press.

    Google Scholar 

  • Grubesic, Tony H., & Murray, Alan T. (2006). Vital nodes, interconnected infrastructures, and the geographies of network survivability. Annals of the Association of American Geographers, 96(1), 64–83.

    Article  Google Scholar 

  • Hilbe, J. (2007). Negative binomial regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Israeli, E., & Wood, K. (2002). Shortest path network interdiction. Networks, 40(2), 97–111.

    Article  Google Scholar 

  • Lim, C., & Smith, J. C. (2007). Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Transactions, 39(1), 15–26.

    Article  Google Scholar 

  • Lin, J., & Ban, Y. (2013). Complex network topology of transportation systems. Transport Reviews, 33(6), 658–685.

    Article  Google Scholar 

  • Matisziw, T., Murray, A., & Grubesic, T. (2007). Bounding network interdiction vulnerability through cut-set identification. In A. Murray & T. Grubesic (Eds.), Critical infrastructure: Reliability and vulnerability (pp. 243–255). Heidelberg: Springer.

  • Meyer, B. C., Lescot, J.-M., & Laplana, R. (2009). Comparison of two spatial optimization techniques: A framework to solve multiobjective land use distribution problems. Environmental Management, 43(2), 264–281.

    Article  Google Scholar 

  • Miller, H. J., & Wentz, E. A. (2003). Representation and spatial analysis in geographic information systems. Annals of the Association of American Geographers, 93(3), 574–594.

    Article  Google Scholar 

  • Murray, A. T. (2013). An overview of network vulnerability modeling approaches. GeoJournal, 78(2), 209–221.

    Article  Google Scholar 

  • Murray, A., Matisziw, T., & Grubesic, T. (2007). Critical network infrastructure analysis: Interdiction and system flow. Journal of Geographical Systems, 9(2), 103–117.

    Article  Google Scholar 

  • Ohman, K., & Eriksson, L. O. (2002). Allowing for spatial consideration in long-term forest planning by linking linear programming with simulated annealing. Forest Ecology and Management, 161(1–3), 221–230.

    Article  Google Scholar 

  • Przemieniecki, J. S. (2000). Mathematical methods in defense analysis. Reston, Virginia: AIAA Education Series.

    Book  Google Scholar 

  • Reese, J. (2006). Solution methods for the p-median problem: An annotated bibliography. Networks, 48(3), 125–142.

    Article  Google Scholar 

  • Salmeron, J., Wood, R. K., & Baldick, R. (2004). Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems, 19(2), 105–912.

  • Snediker, D. E., Murray, A. T., & Matisziw, T. C. (2008). Decision support for network disruption mitigation. Decision Support Systems, 44(4), 954–969.

    Article  Google Scholar 

  • Tong, D., & Murray, A. (2012). Spatial optimization in geography. Annals of the Association of American Geographers, 102(6), 1290–1309.

    Article  Google Scholar 

  • Wood, K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17(2), 1–18.

    Article  Google Scholar 

  • Yates, J., Batta, R., & Karwan, M. (2011). Optimal placement of sensors and interception resource assessment for the protection of regional infrastructure from covert attack. Journal of Transport Security, 4(2), 145–169.

  • Yates, J., & Casas, I. (2012). Role of spatial data in the protection of critical infrastructure and homeland defense. Applied Spatial Analysis and Policy, 5(1), 1–23.

    Article  Google Scholar 

  • Yates, J., & Lakshmanan, K. (2011). A constrained binary knapsack approximation for shortest path interdiction. Computers & Industrial Engineering, 61(4), 981–992.

  • Zhang, T., Madhani, S., & van den Berg, E. (2005). Sensor on patrol (SOP): Using mobile sensors to detect potential airborn nuclear, biological and chemical attacks. In IEEE military communications conference MILCOM (pp. 2924–2929).

  • Zhuang, J., & Bier, V. (2007). Balancing terrorism and natural disasters—defensive strategy with endogneous attacker effect. Operations Research, 55(5), 976–991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, I., Delmelle, E. & Yates, J. Geographic characteristics of a network interdiction problem. GeoJournal 81, 37–53 (2016). https://doi.org/10.1007/s10708-014-9595-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-014-9595-1

Keywords

Navigation