Skip to main content
Log in

Spatio-temporal traffic video data archiving and retrieval system

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

This paper presents a transportation spatio-temporal system that efficiently converts traffic video data into vehicular motion information in spatio-temporal databases for a variety of transportation applications. The proposed transportation spatio-temporal system interpolates the vehicle trajectory data (i.e., time, location, and speed), which are extracted from video, and integrates them with spatial road information for storage of dynamic transportation environments. The proposed transportation spatio-temporal system can mitigate data storage and retrieval issues related to storing large amounts of traffic video. Moreover, users can manage and operate multiform and multidimensional traffic data in a spatio-temporal transportation environment. The proposed approach is demonstrated for typical transportation applications. The experimental results show that the proposed transportation spatio-temporal system has excellent potential for addressing issues related to storage of large amounts of traffic video data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Miller HJ (1999) Potential contributions of spatial analysis to geographic information systems for transportation. Geogr Anal 31:373–399

    Article  Google Scholar 

  2. Butler AJ, Dueker KJ (2001) Implementing the enterprise GIS in transportation database design. URISA J 13(1)

  3. Roess RP, Prassas ES, McShane WR (2011) Traffic Engineering, 4th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  4. Gong Y (2003) Audio and visual content summarization of a video program, chapter 10. In: Furht B, Marques O (eds) Handbook of video databases: design and applications

  5. Wactlar HD, Christel MG, Gong Y, Hauptmann AG (1999) Lessons learned from building a terabyte digital video library. IEEE Comput 32:66–73

    Article  Google Scholar 

  6. Aslandogan YA, Yu CT (1999) Techniques and systems for image and video retrieval. IEEE Trans Knowl Data Eng 11:56–63

    Article  Google Scholar 

  7. Agma J, Traina M, Traina C Jr. (2003) Similarity search in multimedia databases, chapter 29. In: Furht B, Marques O (eds) Handbook of video databases: design and applications, pp. 712–245

  8. Li L, Revesz PZ (2004) Interpolation methods for spatiotemporal geographic data. Comput Environ Urban Syst 28(3):201–227

    Article  Google Scholar 

  9. Revesz PZ (2010) Introduction to database: from biological to spatio-temporal. Springer, New York

    Book  Google Scholar 

  10. Chen CX (2001) Data models and query languages of spatio-temporal information. Ph.D. Dissertation, University of California, Los Angeles, CA

  11. Yue H (2009) Advanced traveler information inquiry, archiving, and decision making system, the 4th Chinese Oversea Student “Chun Hui Cup” Entrepreneurship Competition, Project Presentation

  12. Yin H, Wolfson O (2004) A weight-based map matching method in moving objects databases, the 16th International Conference on Scientific and Statistical Database Management

  13. Liu J, Wolfson O, Yin H (2006) Extracting semantic location from outdoor positioning systems. International Workshop on Managing Context Information and Semantics in Mobile Environments

  14. Cambridge Systematics, Inc. (2005) NGSIM U.S. 101 data analysis (7:50 a.m. to 8:05 a.m.), Prepared for Federal Highway Administration

  15. Wei H, Feng C, Meyer E, Lee J (2005) Video-capture-based approach to extract multiple vehicular trajectory data for traffic modeling. J Transp Eng 131(7):496–505

    Article  Google Scholar 

  16. Skabardonis A, Alexiadis V (2005) Traffic data through the Berkeley highway laboratory. Workshop on Traffic Modeling, Sedona, AZ

  17. Kim Z, Gomes G, Hranac R, Skabardonis A (2005) A machine vision system for generating vehicle trajectories over extended freeway segments, the 12th World Congress on Intelligent Transportation Systems

  18. Tao RH, Wei H, Wang YH, Sisiopiku VP (2004) Modeling speed disturbance absorption following state-control action-expected chains: integrated car-following and lane-changing scenarios, the 83rd Annual Meeting of Transportation Research, Washington, D.C

  19. Wei H (1999) Observed lane-choice and lane-changing behaviors on an urban street network using video-capture-based approach and suggested structures of their models. Ph.D. dissertation, Univ. of Kansas, KS

  20. U.S. Department of Transportation, Federal Highway Administration (2007) NGSIM-VIDEO user’s manual, Publication No. #FHWA-HOP-07-009

  21. Patamanska G, Slavov N (2007) Using cubic spline interpolation to estimate vertical soil water profile. Bulg J Agric Sci 13:317–323

    Google Scholar 

  22. Boyko A, Pavlova V (1986) Restoration of soil moisture reserve profile using spline interpolation instrument. Tr VNISKHM 21:102–111

    Google Scholar 

  23. Thant A, Khaing A (2009) Application of cubic spline interpolation to walking patterns of biped robot. World Acad Sci Eng Technol 50:27–34

    Google Scholar 

  24. Su B, Tan J (2007) Sweeping surface generated by a class of generalized quasi-cubic interpolation spline. Int Conf Comput Sci (2):41–48

  25. Dubau C (2011) Optimal property of the shape of aeolian blade profile using cubic splines. J Comput Anal Appl 13(1):254

    Google Scholar 

  26. Recktenwald G (2000) Numerical methods with MATLAB: implementation and application. Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Guo D, Liu S, Jin H (2010) A graph-based approach to vehicle trajectory analysis. J Locat Based Serv 4:183–199. doi:10.1080/17489725.2010.537449

    Article  Google Scholar 

  28. Liu S, Liu C, Luo Q, Ni L, Krishnan R (2012) Calibrating large scale vehicle trajectory data. Living Analytics Research Center (LARC), Technical Report Series: LARC-TR-01-12

  29. Douglas D, Peucker T (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can Cartographer 10:112–122

    Article  Google Scholar 

  30. Jeung H, Yiu ML, Zhou X, Jensen CS, Taoshen H (2008) Discovery of convoys in trajectory databases. VLDB Endowment 1:1068–1080

    Article  Google Scholar 

  31. Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, ACM Press, pp 593–604

  32. Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008) Visually driven analysis of movement data by progressive clustering. Inf Vis 7:225–239

    Article  Google Scholar 

  33. Gindele T, Brechtel S, Dillmann R (2010) A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments, the 13th International IEEE Annual Conference on Intelligent Transportation Systems, Madeira Island, Portugal

  34. Egerstedt M, Martin CF (2001) Optimal trajectory planning and smoothing splines. Automatica 37:1057–1064

    Article  Google Scholar 

  35. Shcherbakov MV, Brebels A (2011) Outliers and anomalies detection based on neural networks forecast procedure. In: Proceedings of the 31st Annual International Symposium on Forecasting, ISF-2011, pp 21–22

  36. Pham-GIA T, Hung TL (2001) The mean and median absolute deviation. Math Comput Model 34:921–936

    Article  Google Scholar 

  37. Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, Kamaev VA (2013) A survey of forecast error measures. World Appl Sci J 24 (Information Technologies in Modern Industry, Education & Society):171–176, ISSN 1818–4952

  38. Rousseeuwa PJ, Crouxa C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):1273–1283

    Article  Google Scholar 

  39. Highway Capacity Manual (2000) Transportation Research Board; Bk&CD-Rom edition, ISBN-10: 9991332944, Chapter 7–3

  40. Hastie T, Loader C (1993) Local regression: automatic kernel carpentry. Stat Sci 8(2):120–129

    Article  Google Scholar 

  41. Nadaraya EA (1964) On estimating regression. Theory Probab Appl 10:186–190

    Article  Google Scholar 

  42. Wathson GW, Leadbetter MR (1964) Hazard analysis I. Biometrika 51:175–184

    Article  Google Scholar 

  43. Gasser T, Müller HG (1979) Kernel estimation of regression functions. In: Gasser T, Rosenblatt M (eds) Smoothing techniques for curve estimation. Springer, Heidelberg, pp 23–68

    Chapter  Google Scholar 

  44. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    Book  Google Scholar 

  45. Fan J, Marron JS (1994) Fast implementations of nonparametric curve estimators. J Comput Graph Stat 3:35–56

    Google Scholar 

  46. Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20(4):2008–2036

    Article  Google Scholar 

  47. Ruppert D, Wand M (1994) Multivariate locally weighted least-squares regression. Ann Stat 22(3):1346–1370

    Article  Google Scholar 

  48. Cheng MY, Fan J, Marron J (1997) On automatic boundary corrections. Ann Stat 25(4):1691–1708

    Article  Google Scholar 

  49. Sun H, Liu HX, Xiao H, He RR, Ran B (2003) Use of local linear regression model for short-term traffic forecasting. Transp Res Board 18(1836):59–71

    Google Scholar 

  50. Fan J, Gijbels I (1996) Local polynomial modeling and its applications. Chapman & Hall, London

    Google Scholar 

  51. Smith B, Williams B, Oswald K (1999) Parametric and nonparametric traffic volume forecasting. Transportation Research Record. CDROM

  52. Faouzi E (1996) Nonparametric traffic flow prediction using kernel estimator. Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon, France, July 19, pp 24–26

  53. Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge, Massachusetts

  54. Anjyo K, Lewis JP. RBF interpolation and Gaussian process regression through an RKHS formulation. J Math Ind 3 (2011A-6):63–71

  55. Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Proceeding of the Neural Information Processing Systems, vol 8. MIT Press

  56. Stein ML (1999) Interpolation of spatial data: some theory for Kriging. Springer, New York

    Book  Google Scholar 

  57. Ranjan P, Haynes R, Karsten R (2011) A computationally stable approach to gaussian process interpolation of deterministic computer simulation data. Technometrics 53(4):366–378

    Article  Google Scholar 

  58. Yakowitz SJ, Szidarovszky F (1985) A comparison of Kriging with nonparametric regression methods. J Multivar Anal 16:21–53

    Article  Google Scholar 

  59. Scott DW, Tapia RA, Thompson JR (1977) Kernel density estimation revisited. Nonlinear Anal Theory Methods Appl 1:339–372

    Article  Google Scholar 

  60. Cleveland W (1979) Robust locally weighted regression and smoothing scatter plots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  61. Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87:998–1004

    Article  Google Scholar 

  62. Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London

    Book  Google Scholar 

  63. Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91(433):401–407

    Article  Google Scholar 

  64. Scott DW, Terrell GR (1987) Biased and unbiased cross-validation in density estimation. J Am Stat Assoc 82:1131–1146

    Article  Google Scholar 

  65. Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360

    Article  Google Scholar 

  66. Sheather SJ (1986) An improved data-based algorithm for choosing the window width when estimating the density at a point. Comput Stat Data Anal 4:61–65

    Article  Google Scholar 

  67. Park BU, Marron JS (1990) Comparison of data-driven bandwidth selectors. J Am Stat Assoc 85:66–72

    Article  Google Scholar 

  68. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B 53:683–690

    Google Scholar 

  69. Engel J, Herrmann E, Gasser T (1995) An iterative bandwidth selector for kernel estimation of densities and their derivative. J Nonparametric Statist 4:21–34

  70. Faraway JJ, Jhun M (1990) Bootstrap choice of bandwidth for density estimation. J Am Stat Assoc 85:1119–1122

    Article  Google Scholar 

  71. Ruppert D, Sheather SJ, Wand MP (1995) An effective bandwidth selector for local least squares regression. J Am Stat Assoc 90:1257–1270

    Article  Google Scholar 

  72. Yue H, Jones E, Revesz PZ (2010) Local polynomial regression models for average traffic speed estimation and forecasting in linear constraint databases, 17th IEEE International Symposium on Temporal Representation and Reasoning, Paris, France, pp 154–161

  73. Yue H, Jones E (2010) Archiving capability of spatio-temporal data in different Highway Railroad Grade Crossing (HRGC) databases, Annual Intelligent Transportation System Conference, Houston, USA

  74. Kanellakis P, Kuper G, Revesz PZ (1995) Constraint query languages. J Comput Syst Sci 51(1):26–52

    Article  Google Scholar 

  75. Kerner BS (2009) Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, Berlin

    Book  Google Scholar 

  76. Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, Berlin

    Book  Google Scholar 

  77. Al-Deek H, Abd-Elrahman A (2002) An evaluation plan for the conceptual design of the Florida transportation data warehouse, University of Central Florida, Technical Report No. 16-50-706

  78. Dahlgren J, Garcia RC, Turner S (2001) Completing the circle: using archived operation data to better link decision to performance, California Path Research Report No. UCB-ITS-PRR-2001-23

  79. Liu HX, He R, Tao Y, Ran B (2002) A literature and best practices scan: its data management and archiving, University of Wisconsin at Madison Technical Project No. 0092-02-11

  80. Yue H, Yang R (2005) Development of Intelligent Transportation Systems (ITS) and plan of integrated information system. Journal of Wuhan University of Technology 29(4):560–563

  81. Yue H, Revesz PZ (2012) TVICS: an efficient traffic video information converting system, 19th IEEE International Symposium on Temporal Representation and Reasoning, Leicester, UK, pp 141–148

  82. Schwinn A, Schelp J (2003) Data integration patterns. Business Information Systems Conference, Colorado Springs, USA

  83. Anderson S, Revesz PZ (2009) Efficient max count and threshold operators of moving objects. Geoinformatica 13(4):355–396

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Elizabeth G. Jones for her comments about Fig. 7 and pointing out some related references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, H., Rilett, L.R. & Revesz, P.Z. Spatio-temporal traffic video data archiving and retrieval system. Geoinformatica 20, 59–94 (2016). https://doi.org/10.1007/s10707-015-0231-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-015-0231-0

Keywords

Navigation