Skip to main content
Log in

Higher soil respiration under mowing than under grazing explained by biomass differences

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Different management practices may change the rate of soil respiration, thus affecting the carbon balance of grasslands. Therefore, we investigated the effect of grazing and mowing on soil respiration along with its driving variables (soil water content, soil temperature, above and below ground biomass, vegetation indices and soil carbon) in adjacent treatments (grazed and mowed) at a semi-arid grassland in Hungary (2011–2013). The average soil respiration over three years was higher in the mown (6.03 ± 4.07 µmol CO2 m−2 s−1) than in the grazed treatment (5.29 ± 3.50 µmol CO2 m−2 s−1). While soil water content and soil temperature did not differ between treatments, mowing resulted in 20 % higher soil respiration than grazing, possibly due to 17 % higher average above ground biomass in the mowed than in the grazed treatment. Inclusions of vegetation index VIGreen in the soil respiration model in addition to abiotic drivers improved the explained Rs variance by 16 % in the mowed and by 5 % in the grazed site, respectively. VIGreen alone proved to be a simple and fast indicator of soil respiration (r2 = 0.31 at grazed, r2 = 0.44 at mowed site). We conclude that soil respiration is responsive to the combined effect soil water content, soil temperature, biomass and soil carbon content as affected by the management (grazing vs. mowing) practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–154

    Article  CAS  Google Scholar 

  • Bahn M, Rodeghiero M, Anderson-Dunn M et al (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11:1352–1367. doi:10.1007/s10021-008-9198-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R et al (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460. doi:10.1111/j.1469-8137.2008.02755.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balogh J, Pintér K, Fóti S et al (2011) Dependence of soil respiration on soil moisture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biol Biochem 43:1006–1013. doi:10.1016/j.soilbio.2011.01.017

    Article  CAS  Google Scholar 

  • Barcsák Z, Baskay-Tóth B, and Prieger K (1978) Gyeptermesztés és hasznosítás [Grass production and utilization] Budapest, Mezőazdasági Kiadó. 339 pp

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    Article  CAS  PubMed  Google Scholar 

  • Bremer DJ, Ham JM, Owensby CE, Knapp AK (1998) Responses of soil respiration to clipping and grazing in a tallgrass prairie. J Environ Qual 27:1539–1548

    Article  CAS  Google Scholar 

  • Burri S, Sturm P, Prechsl UE et al (2014) The impact of extreme summer drought on the short-term carbon coupling of photosynthesis to soil CO2 efflux in a temperate grassland. Biogeosciences 11:961–975. doi:10.5194/bg-11-961-2014

    Article  Google Scholar 

  • Campbell GS (1986) Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agric For Meteorol 36:317–321. doi:10.1016/0168-1923(86)90010-9

    Article  Google Scholar 

  • Campbell GS, Norman JM (1989) The description and measurement of plant canopy structure. In: Russell G, Marshall B, Jarvis PG (eds) Plant canopies: their growth, form, and function. Society for Experimental Biology 31. Cambridge University Press, Cambridge, pp 1–19

    Chapter  Google Scholar 

  • Chen Q, Wang Q, Han X et al (2010) Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Glob Biogeochem Cycles 24:1–11. doi:10.1029/2009GB003538

    Article  Google Scholar 

  • Conant RT (2010) Challenges and opportunities for carbon sequestration in grassland systems: a technical report on grassland management and climate change mitigation. Integr Crop Manag 9:1–57

    Google Scholar 

  • Craine J, Wedin D, Chapin FS III (1999) Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207:77–86. doi:10.1023/A:1004417419288

    Article  Google Scholar 

  • Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob Change Biol 10:161–169. doi:10.1111/j.1529-8817.2003.00727.x

    Article  Google Scholar 

  • Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi:10.1038/nature04514

    Article  CAS  PubMed  Google Scholar 

  • De Beurs KM, Henebry GM (2005) A statistical framework for the analysis of long image time series. Int J Remote Sens 26:1551–1573. doi:10.1080/01431160512331326657

    Article  Google Scholar 

  • Fóti S, Balogh J, Nagy Z et al (2014) Soil moisture induced changes on fine-scale spatial pattern of soil respiration in a semi-arid sandy grassland. Geoderma 213:245–254. doi:10.1016/j.geoderma.2013.08.009

    Article  Google Scholar 

  • Frank AB, Liebig MA, Tanaka DL (2006) Management effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil Tillage Res 89:78–85. doi:10.1016/j.still.2005.06.009

    Article  Google Scholar 

  • Geng Y, Wang Y, Yang K et al (2012) Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS ONE 7:e34968. doi:10.1371/journal.pone.0034968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gitelson A, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ 80:76–87

    Article  Google Scholar 

  • Gong J-R, Wang Y, Liu M et al (2014) Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil Tillage Res 144:20–31. doi:10.1016/j.still.2014.06.002

    Article  Google Scholar 

  • Guanter L, Zhang Y, Jung M et al (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci USA 111:E1327–E1333. doi:10.1073/pnas.1320008111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554. doi:10.1016/j.tree.2006.06.004

    Article  PubMed  Google Scholar 

  • Hou X, Wang Z, Michael SP et al (2014) The response of grassland productivity, soil carbon content and soil respiration rates to different grazing regimes in a desert steppe in northern China. Rangel J 36:573–582

    Google Scholar 

  • Huang N, Niu Z (2012) Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems. Plant Soil. doi:10.1007/s11104-012-1488-9

    Google Scholar 

  • Hungarian Standard (1987) Physical, biological and chemical analysis of peat and peat mixes. Determination of organic matter and organic carbon content, MSZ-08-0012-6:1987. Budapest, 4 p

  • Hunt R (1990) Basic growth analysis. Unwin Hayman Ltd, London

    Book  Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. Agriculture, forestry, and other land use, vol 4. Emissions from livestock and manure management, chap 10

  • Jia X, Wei X (2012) Agricultural and forest meteorology responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agric For Meteorol 166–167:32–40. doi:10.1016/j.agrformet.2012.05.022

    Article  Google Scholar 

  • Koncz P, Besnyői V, Csathó AI, Nagy J, Szerdahelyi T, Zs Tóth, Pintér K, Balogh J, Nagy ZBS (2014) Effect of grazing and mowing on the microcoenological composition of semi-arid grassland in Hungary. Appl Ecol Environmnetal Res 12:563–575

    Article  Google Scholar 

  • Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81:113–127. doi:10.1007/s10705-007-9147-x

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. doi:10.2307/2389824

    Article  Google Scholar 

  • Lou Y, Zhou X (2006) Soil respiration and the environment. Elsevier, Amsterdam

    Google Scholar 

  • Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712. doi:10.1146/annurev.ecolsys.38.091206.095808

    Article  Google Scholar 

  • Molnár Z, Bartha S, Seregélyes T et al (2007) A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA). Folia Geobot 42:225–247

    Article  Google Scholar 

  • Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. doi:10.1016/j.soilbio.2013.01.002

    Article  CAS  Google Scholar 

  • Nagy Z, Pintér K, Czóbel S et al (2007) The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric Ecosyst Environ 121:21–29. doi:10.1016/j.agee.2006.12.003

    Article  CAS  Google Scholar 

  • Nagy Z, Pintér K, Pavelka M et al (2011) Carbon balance of surfaces vs. ecosystems: advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems. Biogeosci Discuss 8:941–973. doi:10.5194/bg-8-2523-2011

    Article  Google Scholar 

  • Necpálová M, Li D, Lanigan G et al (2014) Changes in soil organic carbon in a clay loam soil following ploughing and reseeding of permanent grassland under temperate moist climatic conditions. Grass Forage Sci 69:611–624. doi:10.1111/gfs.12080

    Article  Google Scholar 

  • Sakamoto T, Gitelson AA, Nguy-Robertson AL et al (2012) An alternative method using digital cameras for continuous monitoring of crop status. Agric For Meteorol 154–155:113–126. doi:10.1016/j.agrformet.2011.10.014

    Article  Google Scholar 

  • Shahzad T, Chenu C, Repinçay C et al (2012) Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol Biochem 51:73–80. doi:10.1016/j.soilbio.2012.04.014

    Article  CAS  Google Scholar 

  • Shrestha BM, Sitaula BK, Singh BR, Bajracharya RM (2004) Fluxes of CO2 and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate. Nutr Cycl Agroecosyst 68:155–164

    Article  CAS  Google Scholar 

  • Silleos NG, Alexandridis TK (1996) Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int 21:21–28

    Article  Google Scholar 

  • Singh JS, Lauenroth WK, Milchunas DG (1983) Geography of grassland ecosystems. Prog Phys Geogr 7:46–80. doi:10.1177/030913338300700102

    Article  Google Scholar 

  • Smith P, Cai Z, Martino D et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363:789–813. doi:10.1098/rstb.2007.2184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soussana J, Loiseau P, Vuichard N, et al (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. doi: 10.1079/SUM2003234

    Google Scholar 

  • Soussana JF, Allard V, Pilegaard K et al (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–134. doi:10.1016/j.agee.2006.12.022

    Article  CAS  Google Scholar 

  • Stark S, Tuomi J, Strömmer R, Helle T (2003) Non-parallel changes in soil microbial carbon and nitrogen dynamics due to reindeer grazing in northern boreal forests. Ecography (Cop) 26:51–59. doi:10.1034/j.1600-0587.2003.03336.x

    Article  Google Scholar 

  • Stehfest E, Bouwman L, Vuuren DP et al (2009) Climate benefits of changing diet. Clim Change 95:83–102. doi:10.1007/s10584-008-9534-6

    Article  CAS  Google Scholar 

  • Thorne M, Frank D (2008) The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecol 200:205–215. doi:10.1007/s11258-008-9445-7

    Article  Google Scholar 

  • Vinczeffy I (1993) Legelő és gyepgazdálkodás [Pasture and grassland management]. Mezőgazda Kiadó, Budapest

    Google Scholar 

  • Wan S, Luo Y (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochem CY 17:1–12. doi:10.1029/2002GB001971

    Article  Google Scholar 

  • Wang WJ, Zu YG, Wang HM et al (2005) Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. J For Res 10:57–60. doi:10.1007/s10310-004-0102-2

    Article  Google Scholar 

  • Wang M, Liu X, Zhang J et al (2015) Soil respiration associated with plant succession at the meadow steppes in Songnen Plain, Northeast China. J Plant Ecol 8:51–60. doi:10.1093/jpe/rtu006

    Article  Google Scholar 

  • Zhang G, Kang Y, Han G et al (2011) Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agric Scand Sect B-Soil Plant Sci 61:356–364. doi:10.1080/09064710.2010.495079

    CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has been conducted as part of the “AnimalChange” Project which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under the Grant Agreement No. 266018. János Balogh acknowledges the support of the Hungarian Scientific Research Fund (OTKA PD 100575) Project and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Szilvia Fóti acknowledges the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. We would like to express our thank for the help of the Kiskunság National Park. We are grateful for the intensive soil and biomass sample analysis to Helga Nagy Tiborné Déri, Zsófi Lucsik, Bernadett Surányi, Erika Guba, Berta Roberta, Sipőcz Vivien, Ildikó Maraffai and Tibor Kocsis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Koncz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koncz, P., Balogh, J., Papp, M. et al. Higher soil respiration under mowing than under grazing explained by biomass differences. Nutr Cycl Agroecosyst 103, 201–215 (2015). https://doi.org/10.1007/s10705-015-9732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9732-3

Keywords

Navigation