Skip to main content
Log in

Inorganic nitrogen losses from irrigated maize fields with narrow buffer strips

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Vegetated buffer strips (BS) can help prevent nitrogen (N) losses from fields by subsurface lateral flow, thus protecting water resources. The purpose of this study was to determine if narrow BS would effectively remove dissolved inorganic N from subsurface lateral flow. Nitrate–N (NO3–N) and ammonia–N (NH3–N) concentrations in subsurface lateral flow were measured at 1 m depth in a BS system consisting of five treatments: G: strip of grass (Fescue arundinacea); GS: strip of grass and line of native shrubs (Fuchsia magellanica); GST1: strip of grass, line of shrubs and line of native trees 1 (Luma chequen); GST2: strip of grass, line of shrubs and line of native trees 2 (Drimys winteri); and C: bare soil as control. Water samples for the NO3–N and NH3–N measurements were collected between June 2012 and August 2014 in observation wells located at the inlet (input) and outlet (output) of each treatment. The analyses showed that vegetated BS had NO3–N removal efficiency ranging from 33 to 67 % (mean 52 %), with the G treatment showing the best performance in reducing NO3–N concentrations in subsurface lateral flow. The BS treatments were not effective in reducing NH3–N concentrations. The results suggested that N uptake by grass is the main process associated with the NO3–N retention capacity of vegetated BS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO—Food and Agriculture Organization of the United Nations, Rome

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Balestrini R, Arese C, Delconte CA, Lotti A, Salerno F (2011) Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecol Eng 37:148–157

    Article  Google Scholar 

  • Berenguer P, Santiveri F, Boixadera J, Lloveras J (2009) Nitrogen fertilisation of irrigated maize under Mediterranean conditions. Eur J Agron 30:163–171

    Article  CAS  Google Scholar 

  • Borin M, Bigon E (2002) Abatement of NO3–N concentration in agricultural waters by narrow buffer strips. Environ Pollut 117:165–168

    Article  CAS  PubMed  Google Scholar 

  • Borin M, Vianello M, Morari F, Zanin G (2005) Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agric Ecosyst Environ 105:101–114

    Article  CAS  Google Scholar 

  • Borin M, Passoni M, Thiene M, Tempest T (2010) Multiple functions of buffer strips in farming areas. Eur J Agron 32:103–111

    Article  Google Scholar 

  • Bouwer H (1986) Intake rate: cylinder infiltrometer. In: Klute A (ed) Methods of soil analysis, vol 1, 2ª edn. ASA and SSSA, Madison, pp 825–844

    Google Scholar 

  • Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–98

    Article  Google Scholar 

  • Burt TP, Haycock NE (1993) Controlling losses of nitrate by changing land use. In: Burt TP, Heathwaite AL, Trudgill ST (eds) Nitrate-processes, patterns and management. Wiley, UK, pp 341–368

    Google Scholar 

  • Casanova M, Seguel O, Salazar O, Luzio W (2013) Soils of Chile. Soils of the world soils series. Springer, Germany

    Google Scholar 

  • Cors M, Tychon B (2007) Grassed buffer strips as nitrate diffuse pollution remediation tools: management impact on the denitrification enzyme activity. Water Sci Technol 55:25–30

    Article  CAS  PubMed  Google Scholar 

  • Doney SC (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–1516

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Alva AK, Khakural BR (1997) Nitrogen mineralization from citrus tree residues under different production conditions. Soil Sci Soc Am J 61:1226–1232

    Article  CAS  Google Scholar 

  • Dunn AM, Julien G, Ernst WR, Cook A, Doe KG, Jackman PM (2011) Evaluation of buffer zone effectiveness in mitigating the risks associated with agricultural runoff in Prince Edward Island. Sci Total Environ 409:868–882

    Article  CAS  PubMed  Google Scholar 

  • Fuentes I, Casanova M, Seguel O, Nájera F, Salazar O (2014) Morpho-physical pedotransfer functions for groundwater pollution by nitrate leaching in Central Chile. Chil J Agric Res 74:340–348

    Article  Google Scholar 

  • Fuentes I, Casanova M, Seguel O, Padarian J, Nájera F, Salazar O (2015) Preferential flow paths in two alluvial soils with long-term pig slurry additions in the Mediterranean zone in Chile. Soil Res. doi:10.1071/SR14264

    Google Scholar 

  • Gabriel JL, Muñoz-Carpena R, Quemada M (2012) The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric Ecosyst Environ 155:50–61

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Hanselman TA, Graetz DA, Obreza TA (2004) A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments. J Environ Qual 33:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Hefting MM, Clement J, Bienkowski P, Dowrick D, Guenat C, Butturini A, Topa S, Pinay G, Verhoeven JTA (2005) The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol Eng 24:465–482

    Article  Google Scholar 

  • INIA (1989) Mapa Agroclimático de Chile (Agroclimatic Map of Chile). Instituto de Investigaciones Agropecuarias (INIA), Santiago, Chile (in Spanish)

    Google Scholar 

  • Kolberg RL, Rouppet B, Westfall DG, Peterson GA (1997) Evaluation of an in situ net soil nitrogen mineralization in dryland agroecosystems. Soil Sci Soc Am J 61:504–508

    Article  CAS  Google Scholar 

  • Larson RA, Safferman SI (2012) Field application of farmstead runoff to vegetated filter strips: surface and subsurface water quality assessment. J Environ Qual 41:592–603

    Article  CAS  PubMed  Google Scholar 

  • Mayer PM, Reynolds SK, McCutchen MD, Canfield TJ (2006) Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: A review of current science and regulations. EPA/600/R-05/118. Environmental Protection Agency, Cincinnati, USA

  • Nájera F, Tapia Y, Baginsky C, Figueroa V, Cabeza R, Salazar O (2015) Evaluation of soil fertility and fertilisation practices for irrigated maize (Zea mays L.) under Mediterranean conditions in central Chile. J Soil Sci Plant Nutr 15:84–97

    Google Scholar 

  • Noij IGAM, Heinen M, Heesmans HIM, Thissen JTNM, Groenendijk P (2012) Effectiveness of unfertilized buffer strips for reducing nitrogen loads from agricultural lowland to surface waters. J Environ Qual 41:322–333

    Article  CAS  PubMed  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Prokopy LS, Floress K, Klotthor-Weinkauf D, Baumgart-Getz A (2008) Determinants of agricultural best management practice adoption: evidence from the literature. J Soil Water Conserv 63:300–311

    Article  Google Scholar 

  • Quemada M, Baranski M, de Lange MNJ, Vallejo A, Cooper JC (2013) Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric Ecosys Environ 174:1–10

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Sadzawka A, Grez R, Carrasco MA, Mora M (2004) Métodos recomendados para tejidos vegetales (Recommended Methods for Vegetal Tissues). Comisión Nacional de Normalización y Acreditación, Sociedad Chilena de la Ciencia del Suelo, Chile (in Spanish)

    Google Scholar 

  • Sadzawka A, Grez R, Carrasco MA, Mora ML (2006) Métodos Recomendados para Suelos Chilenos (Recommended Methods for Chilean Soils). Comisión Nacional de Normalización y Acreditación, Sociedad Chilena de la Ciencia del suelo, Santiago, Chile (in Spanish)

    Google Scholar 

  • Salazar O, Wesström I, Joel A, Youssef MA (2013a) Application of an integrated framework for estimating nitrate loads from a coastal watershed in southeast Sweden. Agric Water Manag 129:56–68

    Article  Google Scholar 

  • Salazar O, Hansen S, Abrahamsen P, Hansen K, Gundersen P (2013b) Changes in soil water balance following afforestation of former arable soils in Denmark as evaluated using the DAISY model. J Hydrol 484:128–139

    Article  Google Scholar 

  • Salazar O, Vargas J, Nájera F, Seguel O, Casanova M (2014) Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil. Agr Water Manag 146:218–227

    Article  Google Scholar 

  • Salmerón M, Isla R, Cavero J (2011) Effect of winter cover crop species and planting methods on maize yield and N availability under irrigated Mediterranean conditions. Field Crop Res 123:89–99

    Article  Google Scholar 

  • Sandoval M, Dörner J, Seguel O, Cuevas J, Rivera D (2012) Métodos de Análisis Físicos de Suelos (Methods for soil physical analyses). Departamento de Suelos y Recursos Naturales, Universidad de Concepción. Publicación no. 5, Chile (in Spanish)

  • Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H, Savchunk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194

    Article  CAS  PubMed  Google Scholar 

  • van Beek CL, Heinen M, Clevering OA (2007) Reduced nitrate concentrations in shallow ground water under a non-fertilised grass buffer strip. Nutr Cycl Agroecosyst 79:81–91

    Article  Google Scholar 

  • Vitousek PM, Aber J, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD (1997) Human alteration of the global nitrogen cycle: causes and consequences. Issues Ecol 1:1–15

    Google Scholar 

  • Wang L, Duggin JA, Nie D (2012) Nitrate–nitrogen reduction by established tree and pasture buffer strips associated with a cattle feedlot effluent disposal area near Armidale, NSW Australia. J Environ Manag 99:1–9

    Article  CAS  Google Scholar 

  • Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Workgroup Report: drinking-water nitrate an health-recent findings and research needs. Environ Health Perspect 113:1607–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Webber DF, Mickelson SK, Wulf LW, Richard TL, Ahn HK (2010) Hydrologic modeling of runoff from a livestock manure windrow composting site with a fly ash pad surface and vegetative filter strip buffers. J Soil Water Conserv 65:252–260

    Article  Google Scholar 

  • Yamada T, Logsdon SD, Tomer MD, Burkart MR (2007) Groundwater nitrate following installation of a vegetated riparian buffer. Sci Total Environ 385:297–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Soil and Engineering at the University of Chile for supporting this study. We also thank Norma Sepulveda and Jorge Farias, who helped in sampling and laboratory analysis. This research was partially funded by FONDECYT de Iniciación 2011 Grant No. 11110464. This study was funded by FONDECYT de Iniciación 2011 Project No. 11110464.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Salazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, O., Rojas, C., Avendaño, F. et al. Inorganic nitrogen losses from irrigated maize fields with narrow buffer strips. Nutr Cycl Agroecosyst 102, 359–370 (2015). https://doi.org/10.1007/s10705-015-9707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9707-4

Keywords

Navigation