Skip to main content

Advertisement

Log in

Long-term decline in soil fertility and responsiveness to fertiliser as mitigated by short fallow periods in sub-Sahelian area of Togo

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Using 40-year experiment data from a mono-modal rainfall area of northern Togo, we analyzed soil fertility dynamics when 2 and 3-year fallows were alternated with 3-year rotation of groundnut, cotton and sorghum. The control treatment consisted to continuous cultivate the soil in a rotation of groundnut/cotton/sorghum without fallow periods. For each rotation, two fertilisation rates were applied: no fertilisation and mineral fertiliser application during the cropping and/or the fallow periods. Yields of unfertilised crops, which averaged 1 t ha−1 during the first years of cultivation, were often nil in the long-term. In the long-term, yields of fertilised cotton and sorghum decreased by 32 and 50 %, respectively compared to the average of 2.4 and 1.6 t ha−1 obtained during the first decade of cultivation. The long-term decline in crop productivity was mitigated when fallow periods were alternated with cropping periods, and consequently there was partial compensation in terms of production for the unproductive fallowed plots. Long-term yields of fertilised cotton and sorghum in the periodically fallowed plots were 40 and 50 % higher than those in continuously cropped plots, respectively; they were 90 and 60 % higher than those in continuously cropped plots without fertilisation. Like for crop productivity, soil C, N and exchangeable Ca and Mg decreased less in periodically fallowed plots than in continuously cropped plots. The limited soil C decline when fallows were alternated with crops appears to be the consequence of no-tillage period rather than the effect of the highest C inputs to the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Kaisi MM, Yin X, Licht MA (2005) Soil carbon and nitrogen changes as affected by tillage system and crop biomass in a corn–soybean rotation. Appl Soil Ecol 30:174–191

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53(3–4):215–230

    Article  Google Scholar 

  • Barrios E, Kwesiga F, Buresh RJ, Sprent JI (1997) Light fraction soil organic matter and available nitrogen following trees and maize. Soil Sci Soc Am J 61:826–831

    Article  CAS  Google Scholar 

  • Bationo A, Buerkert A (2001) Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutr Cycl Agroecosyt 61:131–142

    Article  Google Scholar 

  • Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2006) Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst 97:13–25

    Google Scholar 

  • Baudron F, Tittonell P, Corbeels M, Letourmy P, Giller KE (2012) Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crop Res 132:117–128

    Article  Google Scholar 

  • Bebwa B, Lejoly J (1993) Soil organic matter dynamics and mineral nutrients content in a traditional fallow system in Zaire. In: Mulongoy K, Merckx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley, Chichester, pp 135–142

    Google Scholar 

  • Bekunda MA, Bationo A, Ssali H (1997) Fertility management in Africa: A review of selected research trials. In: Buresh RT, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. SSSA Special publication, Soil Science Society of America Journal 51, pp 63–79

  • Bhogal A, Young SD, Sylvester-Bradeley R (1997) Straw incorporation and immobilisation of spring-applied nitrogen. Soil Use Manag 13:111–116

    Article  Google Scholar 

  • Brubacher D, Arnason JT, Lambert JDH (1989) Woody species and nutrient accumulation during the fallow period of milpa farming in Belize. Plant Soil 114:165–172

    Article  Google Scholar 

  • Cox WJ, Zobel RW, van Es HM (1990) Tillage effects on some soil physical and corn physiological characteristics. Agron J 82:806–812

    Article  Google Scholar 

  • Dabin B (1956) Considération sur l’interprétation agronomique des analyses de sols en pays tropicaux. Paris 6e Congr Int Sci Sol 4:403–409

    Google Scholar 

  • Dobermann A, Cassman KG, Walters DT, Witt C (2005) Balancing short-term and long-term goals in nutrient management. Better Crops 89:16–18

    Google Scholar 

  • Dominy CS, Haynes RJ (2002) Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two Oxisols. Biol Fertil Soils 36:298–305

    Article  CAS  Google Scholar 

  • Dounias I, Aubry C, Capillon A (2002) Decision-making processes for crop management on African farms. Modelling from a case study of cotton crops in northern Cameroon. Agric Syst 73:233–260

    Article  Google Scholar 

  • Drechsel P, Glaser B, Zech W (1991) Effect of four multipurpose tree species on soil amelioration during tree fallow in Central Togo. Agrofor Syst 16:193–202

    Article  Google Scholar 

  • Duchaufour D, Souchier B (1979) Analyse de complexes organo-minéraux des sols. Edition Masson, Paris

    Google Scholar 

  • Elliott LF, Papendick RI (1986) Crop residue management for improved soil productivity. Biol Agric Hortic 3:131–142

    Article  Google Scholar 

  • FAO Stat (2012) Food and agriculture organisation of United Nations. Resources STA fertilisers. Annual report

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79(1–4):69–116

    Article  CAS  Google Scholar 

  • Feller C, Lavelle P, Albrecht A, Nicolardot B (1993) La jachère et le fonctionnement des sols tropicaux. Rôle de l’activité biologique et des matières organiques. Quelques éléments de réflexion. In: Floret C, Serpantier G (eds) La jachère en Afrique de l’Ouest. ORSTOM, CIRAD-Montpellier, pp 14–32

    Google Scholar 

  • Fermont AM, van Asten PJA, Tittonell P, van Wijk MT, Giller KE (2009) Closing the cassava yield gap: an analysis from smallholder farmers in East Africa. Field Crops Res 112:24–36

    Article  Google Scholar 

  • Golabi MH, Radcliffe DE, Hargrove WL, Tollner EW (1995) Macropore effects in conventional tillage and no-tillage soils. J Soil Water Conserv 50:205–2010

    Google Scholar 

  • Groot JJR, Hassink J, Koné D (1998) Dynamique de la matière organique du sol. In: Breman H, Sissoko K (eds) L’intensification agricole au Sahel. AB-DLO, Wageningen et IER, Bamako. Karthala, Paris, pp 26–36

  • Hanotiaux G, Delecourt F, Legros A, Mathieu L, Geets M (1975) Techniques d’analyses pédologiques. Gembloux, Belgique, Faculté Universitaire des Sciences Agronomiques (Laboratoire de la science du sol), p 105

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management, 7th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Jordan C, Caskey W, Escalante G, Herrera R, Montagnini F, Todd R, Uhl C (1983) Nitrogen dynamics during conversion of primary Amazonian rain forest to slash-and burn agriculture. Oikos 40:131–139

    Article  Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Kintché K, Guibert H, Sogbedji JM, Levêque J, Tittonell P (2010) Carbon losses and primary productivity decline in savannah soils under cotton-cereal rotations in semiarid Togo. Plant Soil 336:469–484

    Article  Google Scholar 

  • Kumar V, Ghosh BC, Bhat R (1999) Recycling of crop wastes and green manure and their impact on yield and nutrient uptake of wetland rice. J Agric Sci 132:149–154

    Article  Google Scholar 

  • Kyuma K, Pairintra C (1983) Shifting cultivation. An experiment at Nam Phrom, 192 Northeast Thailand and its implications for upland farming in the monsoon tropics. Kyoto University, Kyoto, Japan, p 219

  • Mando A, Zougmore R, Zombre NP, Hien V (2001) Réhabilitation des sols dégradés dans les zones semi-arides de lʼAfrique subsahélienne. In: Floret C, Pontanier R (eds) La jachère en Afrique tropicale, vol 2. John Libbey, Paris, pp 311–339

    Google Scholar 

  • McNair Bostick MW, Bado VB, Bationo A, Soler CT, Hoogenboom G, Jones JW (2006) Soil carbon dynamics and residue yields of cropping systems in the Northern Guinea Savannah of Burkina Faso. Soil Tillage Res 93:138–151

    Article  Google Scholar 

  • Mitchell R, John Webb RH (2001) Crop residues can affect N leaching over at least two winters. Eur J Agron 15:17–29

    Article  CAS  Google Scholar 

  • Mtambanengwe F, Mapfumo P (2005) Organic matter management as an underlying cause for soil fertility gradients on smallholder farms in Zimbabwe. Nutr Cycl Agroecosyst 73:227–243

    Article  Google Scholar 

  • Ngwira AR, Aune JB, Thierfelder C (2014) On-farm evaluation of the effects of the principles and components of conservation agriculture on maize yield and weed biomass in Malawi. Exp Agric. doi:10.1017/S001447971400009X

    Google Scholar 

  • Nye PH, Greenland DJ (1960) The soil under shifting cultivation. Technical communications, vol 51. Commonwealth Agricultural Bureaux, Farnham Royal, p 156

    Google Scholar 

  • Olaf E (2003) Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agric Ecosyst Environ 100:17–37

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep Agric Circ 939 p

  • Pandey HN, Singh RN (1987) Structure and function of early successional communities on an abandoned crop field at Varanasi, India. Trop Ecol 28:92–100

    Google Scholar 

  • Ruthenberg H (1980) Farming systems in the tropics, 3rd edn. Clarendon Press, Oxford 424 p

    Google Scholar 

  • Salako F, Tian G (2001) Litter and biomass production from planted and natural fallows on a degraded soil in Southwestern Nigeria. Agrofor Syst 51:239–251

    Article  Google Scholar 

  • Sall SN, Masse D, Ndour NYB, Chotte JL (2006) Does cropping modify the decomposition function and the diversity of the microbial community of tropical fallow soil? Appl Soil Ecol 31:211–219

    Article  Google Scholar 

  • Sanchez PA, Shepherd KD, Soule MJ, Place FM, Mukwunye AU, Bursch RJ, Kwesiga FR, Izac AMN, Ndiritu CG, Woomer PL (1997) Soil fertility replenishment in Africa: an investment in natural resource capital. In: Bursch RJ, Sanchez PA, Calhoon F (eds) Replenishing soil fertility in Africa. Soil Science Society of America, Madison, pp 1–46

    Google Scholar 

  • Sarmiento L, Bottner P (2002) Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: indications for fertility restoration. Appl Soil Ecol 19:79–89

    Article  Google Scholar 

  • Shatar TM, McBratney AB (2004) Boundary-line analysis of field-scale yield response to soil properties. J Agric Sci 142:553–560

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002a) Stabilization mechanisms of soil organic matter: implications for C saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Sa JCD, Albrecht A (2002b) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Solomon D, Lhemann J, Kinyangi J, Amelung W, Loge I, Pell A, Riha S, Goze S, Verchot L, Mbugua D, Skjemstad J, Schäfer T (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical grassland ecosystems. Glob Change Biol 13:511–530

    Article  Google Scholar 

  • Swamy PS, Ramakrishnan PS (1987) Contribution of Mikania micrantha during secondary succession following slash-and-burn agriculture (jhum) in north-east India. I. Biomass, litter fall and productivity. For Ecol Manag 22:229–237

    Article  Google Scholar 

  • Szott LT, Palm CA (1996) Nutrient stocks in managed and natural humid tropical fallows. Plant Soil 186:293–309

    Article  CAS  Google Scholar 

  • Szott LT, Palm CA, Davey CB (1994) Biomass and litter accumulation under managed and natural tropical fallows. For Ecol Manag 67:177–190

    Article  Google Scholar 

  • Szott LT, Palm CA, Buresh RJ (1999) Ecosystem fertility and fallow function in the humid and subhumid tropics. Agrofor Syst 47:163–196

    Article  Google Scholar 

  • Tittonell P, Giller KE (2013) When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res 143:76–90

    Article  Google Scholar 

  • van Noordwijk M (1989) Rooting depth in cropping systems in the humid tropics in relation to nutrient use efficiency. In: van der Heide J (ed) Nutrient management for food crop production in tropical farming systems. Institute for Soil Fertility, Haren, pp 129–144

    Google Scholar 

  • van Noordwijk M (1999) Productivity of intensified crop—fallow rotations in the Trenbath model. Agrofor Syst 47:223–237

    Article  Google Scholar 

  • Vlek PLG, Le Bao Q, Tamene L (2008) Land decline in land-rich Africa—a creeping disaster in the making. CGIAR Science Council Secretariat, Rome, p 63

    Google Scholar 

  • Wairegi LWI, van Asten PJA, Tenywa MM, Bekunda MA (2010) Abiotic constraints override biotic constraints in East African highland banana systems. Field Crops Res 117:146–153

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Zachmann JE, Linden DR, Clapp CE (1987) Macroporus infiltration and distribution as affected by carthworms, tillage and residue. Soil Sci Soc Am J 51:1980–1986

    Article  Google Scholar 

  • Zinke PJ, Sabhasri S, Kundstadter P (1978) Soil fertility aspects of the Lua forest fallow system of shifting cultivation. In: Kundstadter P, Chapman EC, Sabhasri S (eds) Farmers in the forest: economic development and marginal agriculture in northern Thailand, East-West Population Institute, University of Hawaii, Honolulu, Hawaii, USA, pp 134–159

Download references

Acknowledgments

The authors wish to acknowledge the “Service de Coopération des Affaires Culturels” of the French Embassy at Togo for financing this research, Dr. K. A. Agbobli of the Institut Togolais de Recherche Agronomique (ITRA) for his initiative and Dr. F. Maraux of CIRAD Persyst-URSCA for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kintché.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kintché, K., Guibert, H., Bonfoh, B. et al. Long-term decline in soil fertility and responsiveness to fertiliser as mitigated by short fallow periods in sub-Sahelian area of Togo. Nutr Cycl Agroecosyst 101, 333–350 (2015). https://doi.org/10.1007/s10705-015-9681-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9681-x

Keywords

Navigation