Skip to main content
Log in

Irradiated sewage sludge for production of fennel plants in sandy soil

  • Original Paper
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

A field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on the productivity of fennel plants (Foeniculum vulgare L.). Four rates of irradiated and non-irradiated sewage sludge application were used (20, 40, 60, and 80 t ha−1). Samples analysis included the biomass production at the vegetative and flowering stages, seed production, volatile oil content, volatile oil constituents, chlorophyll content, total and reducing sugars, and the heavy metals content of the shoots and seeds.

The biomass production increased as the sludge application rate increased for both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. At the vegetative stage, the biomass values ranged from 10.2 to 34.1 g plant−1 at 80 t ha−1 for non-irradiated and irradiated sewage sludge, respectively. Whereas at the flowering stage, the values ranged from 23.9 to 65.1 g plant−1 at 80 t ha−1 for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar and chlorophyll content increased as the sludge application rate increased. At the 80 t ha−1 of irradiated sludge application rate, the reducing sugar content was 29.39 mg g−1 DW (dry weight) at the vegetative stage and 37.85 mg g−1 DW at the flowering stage. Regarding heavy metals, sewage sludge was a good source to provide fennel plants with essential micronutrients (Zn and Fe) in the meantime, the translocation of (Pb and Cd) to the shoot system was very low. A linear gradual increase in seed yield was observed as the sludge application rate increased. Irradiated sewage sludge treatments showed a higher fennel seed yield than non-irradiated sewage sludge treatments.

Volatile oil percentages exhibited no observable variations due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (l ha−1) increased due to the increase in seed yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seed yield. The GLC measurements of the fennel volatile oil reveal that the t-anethole is the predominant fraction. However, fenchone was detected in a relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t-anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than that fertilized with irradiated sewage sludge. In the meantime, the increase in t-anethole was accompanied by a decline in fenchone content. Under all sludge application rates iron and zinc concentrations of fennel seeds were within the normal plant concentration range, whereas there were only traces of Cd concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo El-Seoud MA, Abd El-Sabour MF, Omer EA (1997) Productivity of roselle (Hibiscus sabdariffa L.) plant as affected by organic waste composts addition to sandy soil. Bull Nat Res Cent Egypt 22:493–503

    Google Scholar 

  • Abo-El-Seoud M, El-Motaium RA, Bataresh M, Kreuzig R (2004) Impact of gamma radiation on the degradability of polynuclear aromatic hydrocarbons in egyptian sewage sludge. Fresen Environ Bull 13(1):52–55

    CAS  Google Scholar 

  • Ahmed YKM (1991) Biochemical and physiological studies on some aromatic plants. M.Sc. Thesis, Faculty of Agriculture, Cairo University

  • AOAC (1980) Official methods of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Arslan N, Bayrak A, Akgul A (1989) The yield and components of essential oil in fennels of different origin grown in Ankara conditions. Herba Hungarica 28:27–31

    CAS  Google Scholar 

  • Ashraf M, Bhatty MK (1975) Studies on the essential oils of the Pakistani species of the family Umbelliferae. II. Foeniculum Yulgare Miller (fennel) seed oil. Pak J Sci Ind Res 18:236–240

    CAS  Google Scholar 

  • Badawy SH, El-Motaium RA (1999) Effect of irradiated and non-irradiated sewage sludge application on some nutrients heavy metals content of soils and tomato plants. Proceedings of the 1st Congress on: Recent Technologies in Agriculture. Bull Fac Agric, Cairo University, Special Edition, vol. IV, pp 728–744

  • Bauer R (1994) Application of solar radiation for photochemical wastewater treatment. Chemosphere 29:1225–1228

    Article  CAS  Google Scholar 

  • Bundesgesundheitsamt (1986) Richtwerte ‘86 fur Blei, Cadmium und Quecksilber in und auf Lebensmitteln. Bundesgesundhbl 29:22–23

    Google Scholar 

  • Chaney RL (1983) Potential effects of waste constituents on the food chain. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, NJ, pp 152–240

    Google Scholar 

  • Donald JL (1972) Trace metals in soils, plants and animals. Adv Agron 24:267–325

    Google Scholar 

  • Dubois M, Smith F, Gilles KA, Hamilton JK, Robers PA (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • El-Khawas KH (1995) Influence of certain radiation on the chemical composition of some species. Ph.D. Thesis, Faculty of Agriculture, Cairo University

  • Epstein E, Taylor JM, Chaney RL (1976) Effects of biosolids and sludge compost applied to soil on some soil physical and chemical properties. J Environ Qual 5:422–426

    Article  CAS  Google Scholar 

  • Getoff N (1996) Radiation-induced degradation of water pollutants—state of the art. Radiat Phys Chem 47:581–593

    Article  CAS  Google Scholar 

  • Grant CA, Buckley WT, Bailey LD, Selles F (1998) Cadmium accumulation in crops. Can J Plant Sci 78:1–17

    CAS  Google Scholar 

  • Guenther E (1961) The essential oils, vols III and IV, 4th edn. D. Yan Nostrand, New York

    Google Scholar 

  • Gurdip S, Ramakrishna U, Narayanan CS, Padmkumari KP, Singh G, Upadhyay R (1990) The chemical investigation of essential oil of Foeniculum vulgare Mill. Ind Perfumer 34:247–249

    Google Scholar 

  • Hashimoto S, Nishimura K, Kawakami W, Watanabe H (1986) Disinfection of sewage sludge cake by an electron accelerator. J Ferment Technol 64:299–304

    Article  CAS  Google Scholar 

  • Hornick SB, Parr JF (1987) Restoring the productivity of marginal soils with organic amendments. Am J Altern Agric 11(2):64–68

    Article  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficient of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  CAS  Google Scholar 

  • Jones BJ, Wolf B, Mills HA (1991) Plant analysis handbook, a practical sampling, preparation, analysis and interpretation guide. Micro-Macro, Athens, GA, p 164

    Google Scholar 

  • Karlsen J, Baerheim SA, Chingova B, Zolatovich G (1969) Fruits of Foeniculum species and their essential oils. Planta Med 1793:281–293

    Google Scholar 

  • Lessel TH (1988) Disinfection of sewage sludge by gamma irradiation and alternative methods. IAEA-TECDOC-454 on: technical and economic comparison of irradiation and conventional methods

  • Marotti M, Piccaglia R (1992) The influence of distillation conditions on the essential oil composition of three varieties of Foeniculum vulgare Mill. J Essent Oil Res 4:562–576

    Google Scholar 

  • Marotti M, Dellacecca V, Piccaglia R, Giovanelli E, Palevitch D, Simon JE, Mathe A (1993) Agronomic and chemical evaluation of three varieties of Foeniculum vulgar Mill. First World Congress on Medicinal and Aromatic Plant for Human Welfare (WOCMAP), Maastricht, Netherlands, 19–25 July 1992. Acta Hortic 331:63–69

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Merrill EW (1977) Destruction of trace toxic compounds in water and sludge by ionizing radiation. Reproduced from the M.I.T. Report to NSF “High Energy Electron Radiation of Wastewater Liquid Residuals”, December, 1977, and “Water 1977” AICHE Symposium Series No. 178, 74:245–250

  • Pandya GA, Sachidanand S, Modi VV (1989) Potential of recycling gamma-irradiated sewage sludge for use as a fertilizer: a study on chickpea (Cicer arietinum). Environ Pollut 56:101–111

    Article  CAS  Google Scholar 

  • Rabie ME, Esaadani AM, Abdel-Sabour MF, Mousa IA (1995) The use of water hyacinth as an organic manure to amend soils. Egypt Soil Sci J 35:105–116

    Google Scholar 

  • Ryan JA, Bryndzia LT (1998) Fate and potential effects of trace elements: issues in co-utilization of by-products. In: Brown S, Angle JS, Jacobs L (eds) Beneficial co-utilization of agricultural, municipal and industrial by-products. Kluwer, Dordrecht, pp 219–233

    Google Scholar 

  • Scora RW, Chang AC (1997) Essential oil quality and heavy metals concentrations of peppermint grown on a municipal sludge-amended soil. J Environ Qual 26:975–979

    CAS  Google Scholar 

  • Susplugas P, Mongold JJ, Carnat AP, Camillieri S, Masse JP, Taillade C, Serrano JJ (1991) Diuretic properties of a lyophilized extract of Foeniculum vulgare. Plantes Med Phytother 25:163–169

    Google Scholar 

  • United States Environmental Protection Agency (1993) 40 CFR part 257 et al., Standards for the use or disposal of sewage sludge; final rules. Fed Reg 58(32):9248–9415

    Google Scholar 

  • Vogtmann H, Fricke K (1989) Nutrient value and utilization of biogenic composts in plant production. Agric Ecosyst Environ 27:471–475

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the International Atomic Energy Agency (Vienna, Austria) for the help and support provided through the TC Project (EGY/8/014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. El-Motaium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Motaium, R.A., El-Seoud, M.A.A. Irradiated sewage sludge for production of fennel plants in sandy soil. Nutr Cycl Agroecosyst 78, 133–142 (2007). https://doi.org/10.1007/s10705-006-9079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9079-x

Keywords

Navigation