Skip to main content
Log in

Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture energy is a substantial material property that measures the ability of materials to resist crack growth. The reinforcement of the epoxy polymers by nanosize fillers improves significantly their toughness. The fracture mechanism of the produced polymeric nanocomposites is influenced by different parameters. This paper presents a methodology for stochastic modelling of the fracture in polymer/particle nanocomposites. For this purpose, we generated a 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone. The crack propagation was modelled by the phantom node method. The stochastic model is based on six uncertain parameters: the volume fraction and the diameter of the nanoparticles, Young’s modulus and the maximum allowable principal stress of the epoxy matrix, the interphase zone thickness and its Young’s modulus. Considering the uncertainties in input parameters, a polynomial chaos expansion surrogate model is constructed followed by a sensitivity analysis. The variance in the fracture energy was mostly influenced by the maximum allowable principal stress and Young’s modulus of the epoxy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson TL (2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Arash B, Park HS, Rabczuk T (2015) Tensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained model. Compos Struct 134:981–988

    Article  Google Scholar 

  • Arash B, Park HS, Rabczuk T (2016) Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites. Carbon 96:1084–1092

    Article  Google Scholar 

  • Areias P, Rabczuk T (2008) Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws. Int J Numer Method Eng 74(3):475–505

    Article  Google Scholar 

  • Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Eur J Comput Mech/Revue Européenne de Mécanique Numérique 15(1–3):81–92

    Article  Google Scholar 

  • Bhuiyan MA, Pucha RV, Worthy J, Karevan M, Kalaitzidou K (2013) Understanding the effect of CNT characteristics on the tensile modulus of CNT reinforced polypropylene using finite element analysis. Comput Mater Sci 79:368–376

    Article  Google Scholar 

  • Bondioli F, Cannillo V, Fabbri E, Messori M (2005) Epoxy-silica nanocomposites: preparation, experimental characterization, and modeling. J Appl Polym Sci 97(6):2382–2386

    Article  Google Scholar 

  • Boutaleb S, Zaïri F, Mesbah A, Naït-Abdelaziz M, Gloaguen JM, Boukharouba T, Lefebvre JM (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46(7):1716–1726

    Article  Google Scholar 

  • Chau-Dinh T, Zi G, Lee PS, Rabczuk T, Song JH (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92:242–256

    Article  Google Scholar 

  • Chen J, Huang Z, Zhu J (2007) Size effect of particles on the damage dissipation in nanocomposites. Compos Sci Technol 67(14):2990–2996

    Article  Google Scholar 

  • Choi SK, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42(6):1191–1198

    Article  Google Scholar 

  • Crestaux T, Le Maıtre O, Martinez JM (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94(7):1161–1172

    Article  Google Scholar 

  • Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53(9):1890–1905

    Article  Google Scholar 

  • Dominkovics Z, Hári J, Kovács J, Fekete E, Pukánszky B (2011) Estimation of interphase thickness and properties in pp/layered silicate nanocomposites. Eur Polymer J 47(9):1765–1774

    Article  Google Scholar 

  • Garcia-Cabrejo O, Valocchi A (2014) Global sensitivity analysis for multivariate output using polynomial chaos expansion. Reliab Eng Syst Saf 126:25–36

    Article  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Charact 221:163–198

    Article  Google Scholar 

  • Grigoriu M (2010) Probabilistic models for stochastic elliptic partial differential equations. J Comput Phys 229(22):8406–8429

    Article  Google Scholar 

  • Guilleminot J, Soize C (2013) On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J Elast 111(2):109–130

    Article  Google Scholar 

  • Hamdia KM, Msekh MA, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T (2015) Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Compos Struct 133:1177–1190

    Article  Google Scholar 

  • Hamdia KM, Zhuang X, He P, Rabczuk T (2016) Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian method. Compos Sci Technol 126:122–129

    Article  Google Scholar 

  • Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33):3523–3540

    Article  Google Scholar 

  • Hbaieb K, Wang Q, Chia Y, Cotterell B (2007) Modelling stiffness of polymer/clay nanocomposites. Polymer 48(3):901–909

    Article  Google Scholar 

  • Huang S, Mahadevan S, Rebba R (2007) Collocation-based stochastic finite element analysis for random field problems. Probab Eng Mech 22(2):194–205

    Article  Google Scholar 

  • Huang Y, Kinloch A (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymers. part II a quantitative description of the microstructure-fracture property relationships. J Mater Sci 27(10):2763–2769

    Article  Google Scholar 

  • Iman RL, Conover W (1982) A distribution-free approach to inducing rank correlation among input variables. Commun. Stat Sim Comput 11(3):311–334

    Article  Google Scholar 

  • Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. PhD thesis, The State University of New Jersey

  • Le TT, Guilleminot J, Soize C (2016) Stochastic continuum modeling of random interphases from atomistic simulations. application to a polymer nanocomposite. Comput Methods Appl Mech Eng 303:430–449

    Article  Google Scholar 

  • Li Y, Waas AM, Arruda EM (2011) A closed-form, hierarchical, multi-interphase model for composites-derivation, verification and application to nanocomposites. J Mech Phys Solids 59(1):43–63

    Article  Google Scholar 

  • Liang Y, Pearson R (2009) Toughening mechanisms in epoxy-silica nanocomposites (ESNs). Polymer 50(20):4895–4905

    Article  Google Scholar 

  • Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194(12):1295–1331

    Article  Google Scholar 

  • Mortazavi B, Bardon J, Ahzi S (2013) Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci 69:100–106

    Article  Google Scholar 

  • Msekh MA, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T (2016) Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Compos Part B Eng 93:97

    Article  Google Scholar 

  • Odegard G, Clancy T, Gates T (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562

    Article  Google Scholar 

  • Pontefisso A, Zappalorto M, Quaresimin M (2015) An efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymers. Comput Mater Sci 96:319–326

    Article  Google Scholar 

  • Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3):491–499

    Article  Google Scholar 

  • Quaresimin M, Salviato M, Zappalorto M (2014) A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Compos Sci Technol 91:16–21

    Article  Google Scholar 

  • Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int J Numer Method Eng 75:577–599

    Article  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297

    Article  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis. The primer. Wiley, Hoboken

    Google Scholar 

  • Scocchi G, Posocco P, Danani A, Pricl S, Fermeglia M (2007) To the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocomposites. Fluid Phase Equilib 261(1):366–374

    Article  Google Scholar 

  • Shokrieh MM, Rafiee R (2010) Stochastic multi-scale modeling of CNT/polymer composites. Comput Mater Sci 50(2):437–446

    Article  Google Scholar 

  • Silani M, Ziaei-Rad S, Esfahanian M, Tan V (2012) On the experimental and numerical investigation of clay/epoxy nanocomposites. Compos Struct 94(11):3142–3148

    Article  Google Scholar 

  • Silani M, Talebi H, Ziaei-Rad S, Kerfriden P, Bordas SP, Rabczuk T (2014) Stochastic modelling of clay/epoxy nanocomposites. Compos Struct 118:241–249

    Article  Google Scholar 

  • Sobol’ IM (1990) On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1):112–118

    Google Scholar 

  • Song JH, Areias P, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67(6):868–893

    Article  Google Scholar 

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  • Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3):491–516

    Article  Google Scholar 

  • Tserpes K, Papanikos P, Labeas G, Pantelakis SG (2008) Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theor Appl Fract Mech 49(1):51–60

    Article  Google Scholar 

  • Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 2013:12. doi:10.1155/2013/978026

  • Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T (2014) Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Compos B Eng 59:80–95

    Article  Google Scholar 

  • Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T (2015a) Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Compos B Eng 68:446–464

    Article  Google Scholar 

  • Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T (2015b) A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Comput Mater Sci 96:520–535

    Article  Google Scholar 

  • Wang H, Zhou H, Peng R, Mishnaevsky L (2011) Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol 71(7):980–988

    Article  Google Scholar 

  • Williams J (2010) Particle toughening of polymers by plastic void growth. Compos Sci Technol 70(6):885–891

    Article  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

  • Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187(1):137–167

    Article  Google Scholar 

  • Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3):945–952

    Article  Google Scholar 

  • Zamanian M, Mortezaei M, Salehnia B, Jam J (2013) Fracture toughness of epoxy polymer modified with nanosilica particles: Particle size effect. Eng Fract Mech 97:193–206

    Article  Google Scholar 

  • Zappalorto M, Salviato M, Quaresimin M (2011) Influence of the interphase zone on the nanoparticle debonding stress. Compos Sci Technol 72(1):49–55

    Article  Google Scholar 

  • Zhao J, Jiang JW, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this research provided by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timon Rabczuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdia, K.M., Silani, M., Zhuang, X. et al. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int J Fract 206, 215–227 (2017). https://doi.org/10.1007/s10704-017-0210-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0210-6

Keywords

Navigation