Skip to main content
Log in

On the deformation and failure of Al 6061-T6 in plane strain tension evaluated through in situ microscopy

  • IUTAM Baltimore
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We investigate deformation and failure of Al 6061-T6 in plane strain conditions through in situ scanning electron microscopy. The global behavior of the specimen, as well as the local deformation of the matrix material, second phase particles, and preexisting voids, is observed with a combination of high temporal/low spatial resolution images and low temporal/high spatial resolution images. It is found that the matrix dominates the deformation response, with the second phase particles and voids imparting little influence on the deformation under the moderate triaxiality levels encountered in this experiment. The initiation or nucleation of cracks is observed to occur by plastic slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The distinction between slip bands and shear bands is simple: slip bands are within one grain, and oriented along crystallographic planes; shear bands, on the other hand, span multiple grains, and their orientation is dictated by the macroscopic stress state. Grains within such a shear band will still exhibit discrete slip along favored crystallographic planes.

  2. We identify low triaxiality to correspond to a state of nearly pure shear, moderate triaxiality to correspond to plane strain tension, and high triaxiality to correspond to tensile loading perpendicular to deep notches or cracks.

  3. While etching would have revealed the initial grain structure, it might also influence the development of deformation on the polished surface. Grain boundaries become visible without etching due to the discrete nature of the deformation even from the onset of plastic deformation.

  4. Two important experimental ingredients are missing; electron back scatter diffraction (EBSD) data that could provide crystallographic orientation information and atomic force microscopy or similar tool that can provide topographic information that could quantify the amount of slip; these are needed to make these observations quantitative and useful for model development.

  5. The area growth is estimated by identifying a region surrounding the feature of interest and tracking its change with global deformation.

References

  • Benzerga AA, Besson J, Pineau A (2004) Anisotropic ductile fracture part 1: experiments. Acta Mater 52:4623–4638

    Article  Google Scholar 

  • Benzerga AA, Leblond JB (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305

    Article  Google Scholar 

  • Benzerga AA, Leblond JB, Needleman A, Tvergaard V (2016) Ductile failure modeling. Int J Fract 201:29–80

    Article  Google Scholar 

  • Biswas P, Narasimhan R, Kumar AM (2013) Interation between a notch and cylindrical voids in aluminum single crystals: experimental observations and numerical simulations. J Mech Phys Solids 61:1027–1046

    Article  Google Scholar 

  • Charsley P (1981) Dislocation arrangements in polycrystalline copper alloys fatigued to saturation. Mater Sci Eng 47:181–185

    Article  Google Scholar 

  • Dao M, Li M (2001) A micromechanics study on strain-localization-induced fracture initiation in bending using crystal plasticity models. Philos Mag A 81(8):1997–2020

    Article  Google Scholar 

  • Davidkov A, Jain MK, Petrov RH, Wilkinson DS, Mishra RK (2012) Strain localization and damage development during bending of Al–Mg alloy sheets. Mater Sci Eng A 550:395–407

    Article  Google Scholar 

  • Fisher JR, Gurland J (1981) Void nucleation in spheroidizd carbon steels part 1: experimental. Metal Sci 15(5):185–192

    Article  Google Scholar 

  • Ghahremaninezhad A, Ravi-Chandar K (2011) Ductile failure in polycrystalline OFHC copper. Int J Solids Struct 48(24):3299–3311

    Article  Google Scholar 

  • Ghahremaninezhad A, Ravi-Chandar K (2012) Ductile failure behavior of polycrystalline Al 6061-T6. Int J Fract 174:177–202

    Article  Google Scholar 

  • Godfrey A, Hughes DA (2004) Physical parameters linking deformation microstructures over a wide range of length scale. Scr Mater 51:831–836

    Article  Google Scholar 

  • Gross AJ, Ravi-Chandar K (2016) On the deformation and failure of Al 6061-T6 at low triaxiality evaluated through in situ microscopy. Int J Fract 200:185–208

    Article  Google Scholar 

  • Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169

    Article  Google Scholar 

  • Hansen BL, Bronkhorst CA, Ortiz M (2010) Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals. Model Simul Mater Sci Eng 18:055001

    Article  Google Scholar 

  • Hughes DA, Hansen N (2000) Microstructure and strength of nickel at large strains. Acta Mater 48:2985–3004

    Article  Google Scholar 

  • Jiang J, Britton TB, Wilkinson AJ (2015) Evolution of intragranular stresses and dislocation densities during cyclic deformation of polycrystalline copper. Acta Mater 94:193–204

    Article  Google Scholar 

  • Kuna M, Sun DZ (1996) Three-dimensional cell model analyses of void growth in ductile materials. Int J Fract 81:235–258

    Article  Google Scholar 

  • Orowan E (1948) Fracture and strength of solids. Rep Prog Phys 12:185–232

    Article  Google Scholar 

  • Puttick KE (1959) Ductile fracture in metals. Philos Mag 4(44):964–969

    Article  Google Scholar 

  • Richelsen AB, Tvergaard V (1994) Dilatent plasticity or upper bound estimates for porous ductile solids. Acta Metall Mater 42:2561–2577

    Article  Google Scholar 

  • Sabnis PA, Maziere M, Forest S, Arakere NK, Ebrahimi F (2012) Effect of secondary orientation on notch-tip plasticity in superalloy single crystals. Int J Plast 28:102–123

    Article  Google Scholar 

  • Sarkar J, Kutty TRG, Conlon KT, Wilkinson DS, Embury JD, Lloyd DJ (2001) Tensile and bending properties of AA5754 aluminum alloys. Mater Sci Eng A 316:52–59

    Article  Google Scholar 

  • Tipper CF (1949) The fracture of metals. Metallurgia 39:133–137

    Google Scholar 

  • Wang R, Mughrabi H, McGovern S, Rapp M (1984) Fatigue of copper single crystals in vacuum an dair. I. Persistent slip bands and dislocation microstructures. Mater Sci Eng 65:219–233

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed during the course of an investigation into ductile failure under two related research programs funded by the Office of Naval Research: MURI Project N00014-06-1-0505-A00001 and FNC Project N00014-08-1-0189. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravi-Chandar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (jpg 202 KB)

Supplementary material 2 (jpg 215 KB)

Supplementary material 3 (jpg 166 KB)

Supplementary material 4 (jpg 171 KB)

Supplementary material 5 (jpg 177 KB)

Supplementary material 6 (jpg 126 KB)

Supplementary material 7 (jpg 16 KB)

Supplementary material 8 (jpg 16 KB)

Supplementary material 9 (jpg 17 KB)

Supplementary material 10 (jpg 16 KB)

Supplementary material 11 (jpg 13 KB)

Supplementary material 12 (jpg 14 KB)

Supplementary material 13 (jpg 14 KB)

Supplementary material 14 (jpg 17 KB)

Supplementary material 15 (jpg 18 KB)

Supplementary material 16 (jpg 16 KB)

Supplementary material 17 (png 27 KB)

Supplementary material 18 (png 26 KB)

Supplementary material 19 (png 27 KB)

Supplementary material 20 (png 26 KB)

Supplementary material 21 (png 23 KB)

Supplementary material 22 (png 23 KB)

Supplementary material 23 (png 22 KB)

Supplementary material 24 (png 26 KB)

Supplementary material 25 (png 24 KB)

Supplementary material 26 (png 26 KB)

Supplementary material 27 (png 27 KB)

Supplementary material 28 (png 27 KB)

Supplementary material 29 (png 28 KB)

Supplementary material 30 (png 27 KB)

Supplementary material 31 (png 25 KB)

Supplementary material 32 (png 26 KB)

Supplementary material 33 (png 26 KB)

Supplementary material 34 (png 25 KB)

Supplementary material 35 (png 25 KB)

Supplementary material 36 (png 25 KB)

Supplementary material 37 (png 27 KB)

Supplementary material 38 (png 27 KB)

Supplementary material 39 (png 26 KB)

Supplementary material 40 (png 25 KB)

Supplementary material 41 (png 23 KB)

Supplementary material 42 (png 22 KB)

Supplementary material 43 (png 23 KB)

Supplementary material 44 (png 25 KB)

Supplementary material 45 (png 24 KB)

Supplementary material 46 (png 25 KB)

Supplementary material 47 (jpg 12 KB)

Supplementary material 48 (jpg 13 KB)

Supplementary material 49 (jpg 10 KB)

Supplementary material 50 (jpg 11 KB)

Supplementary material 51 (jpg 11 KB)

Supplementary material 52 (jpg 8 KB)

Supplementary material 53 (jpg 13 KB)

Supplementary material 54 (jpg 13 KB)

Supplementary material 55 (jpg 13 KB)

Supplementary material 56 (jpg 14 KB)

Supplementary material 57 (jpg 13 KB)

Supplementary material 58 (jpg 13 KB)

Supplementary material 59 (jpg 2 KB)

Supplementary material 60 (jpg 1 KB)

Supplementary material 61 (jpg 2 KB)

Supplementary material 62 (jpg 1 KB)

Supplementary material 63 (jpg 1 KB)

Supplementary material 64 (jpg 1 KB)

Supplementary material 65 (jpg 1 KB)

Supplementary material 66 (jpg 2 KB)

Supplementary material 67 (jpg 1 KB)

Supplementary material 68 (jpg 1 KB)

Supplementary material 69 (png 27 KB)

Supplementary material 70 (png 28 KB)

Supplementary material 71 (png 27 KB)

Supplementary material 72 (png 26 KB)

Supplementary material 73 (png 23 KB)

Supplementary material 74 (png 23 KB)

Supplementary material 75 (png 23 KB)

Supplementary material 76 (png 22 KB)

Supplementary material 77 (png 22 KB)

Supplementary material 78 (png 22 KB)

Supplementary material 79 (png 26 KB)

Supplementary material 80 (png 27 KB)

Supplementary material 81 (png 27 KB)

Supplementary material 82 (png 26 KB)

Supplementary material 83 (png 25 KB)

Supplementary material 84 (png 24 KB)

Supplementary material 85 (png 22 KB)

Supplementary material 86 (png 22 KB)

Supplementary material 87 (png 23 KB)

Supplementary material 88 (png 23 KB)

Supplementary material 89 (png 27 KB)

Supplementary material 90 (png 27 KB)

Supplementary material 91 (png 26 KB)

Supplementary material 92 (png 25 KB)

Supplementary material 93 (png 22 KB)

Supplementary material 94 (png 22 KB)

Supplementary material 95 (png 22 KB)

Supplementary material 96 (png 24 KB)

Supplementary material 97 (png 23 KB)

Supplementary material 98 (png 22 KB)

Supplementary material 99 (png 92 KB)

Supplementary material 100 (png 92 KB)

Supplementary material 101 (png 90 KB)

Supplementary material 102 (png 88 KB)

Supplementary material 103 (png 81 KB)

Supplementary material 104 (png 82 KB)

Supplementary material 105 (png 78 KB)

Supplementary material 106 (png 75 KB)

Supplementary material 107 (png 74 KB)

Supplementary material 108 (png 69 KB)

Supplementary material 109 (png 520 KB)

Supplementary material 110 (png 521 KB)

Supplementary material 111 (png 508 KB)

Supplementary material 112 (png 493 KB)

Supplementary material 113 (png 488 KB)

Supplementary material 114 (png 496 KB)

Supplementary material 115 (tiff 22433 KB)

Supplementary material 116 (png 5686 KB)

Supplementary material 117 (png 5550 KB)

Supplementary material 118 (png 5592 KB)

Supplementary material 119 (png 4906 KB)

Supplementary material 120 (png 4701 KB)

Supplementary material 121 (png 4416 KB)

Supplementary material 122 (png 4304 KB)

Supplementary material 123 (png 4552 KB)

Supplementary material 124 (png 4314 KB)

Supplementary material 125 (png 4204 KB)

Supplementary material 126 (jpg 32 KB)

Supplementary material 127 (jpg 33 KB)

Supplementary material 128 (jpg 33 KB)

Supplementary material 129 (jpg 29 KB)

Supplementary material 130 (jpg 21 KB)

Supplementary material 131 (jpg 23 KB)

Supplementary material 132 (jpg 23 KB)

Supplementary material 133 (jpg 29 KB)

Supplementary material 134 (jpg 28 KB)

Supplementary material 135 (jpg 24 KB)

Supplementary material 136 (jpg 9 KB)

Supplementary material 137 (jpg 10 KB)

Supplementary material 138 (jpg 9 KB)

Supplementary material 139 (jpg 10 KB)

Supplementary material 140 (jpg 8 KB)

Supplementary material 141 (jpg 8 KB)

Supplementary material 142 (jpg 8 KB)

Supplementary material 143 (jpg 10 KB)

Supplementary material 144 (jpg 11 KB)

Supplementary material 145 (jpg 10 KB)

Supplementary material 146 (png 73 KB)

Supplementary material 147 (png 83 KB)

Supplementary material 148 (png 136 KB)

Supplementary material 149 (png 133 KB)

Supplementary material 150 (png 77 KB)

Supplementary material 151 (png 74 KB)

Supplementary material 152 (png 117 KB)

Supplementary material 153 (png 112 KB)

Supplementary material 154 (png 65 KB)

Supplementary material 155 (png 66 KB)

Supplementary material 156 (png 69 KB)

Supplementary material 157 (png 107 KB)

Supplementary material 158 (png 109 KB)

Supplementary material 159 (png 106 KB)

Supplementary material 160 (png 101 KB)

Supplementary material 161 (png 91 KB)

Supplementary material 162 (png 93 KB)

Supplementary material 163 (png 92 KB)

Supplementary material 164 (png 87 KB)

Supplementary material 165 (png 87 KB)

Supplementary material 166 (png 85 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, A.J., Ravi-Chandar, K. On the deformation and failure of Al 6061-T6 in plane strain tension evaluated through in situ microscopy. Int J Fract 208, 27–52 (2017). https://doi.org/10.1007/s10704-017-0209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0209-z

Keywords

Navigation