Skip to main content
Log in

Antiplane two-scale model for dynamic failure

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A new dynamic damage law is proposed for the anti-plane loading case. The model is deduced from the energy criterion describing the dynamic propagation of microcracks by using the mathematical homogenization method based on asymptotic expansions. A study of the local macroscopic response predicted by the new model is conducted to highlight the influence of parameters like the size of the microstructure and the rate of loading on the evolution of damage. Results of macroscopic simulations of dynamic failure and the associated branching instabilities are presented and compared with those reported by experimental observations and theoretical studies on dynamic fracture in brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. For simplicity reasons, in what follows the superscript (0) in the notation of the macroscopic fields will be omitted.

References

  • Adda-Bedia M (2004) Brittle fracture dynamics with arbitrary paths II. Dynamic crack branching under general antiplane loading. J Mech Phys Solids 52:1407–1420

    Article  Google Scholar 

  • Allix O, Feissel P, Thévenet P (2003) A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues. Comput Struct 81:1177–1191

    Article  Google Scholar 

  • Bhatt H, Rosakis A, Sammis G (2011) A micro-mechanics based constitutive model for brittle failure at high strain rates. J Appl Mech 79(3):1016–1028

    Google Scholar 

  • Benssousan A, Lions J, Papanicolaou G (1978) Asymptotic analysis for periodic structures. Kluwer, Amsterdam

    Google Scholar 

  • Bouchbinder E, Goldman T, Fineberg J (2014) The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Rep Prog Phys 77:046501

    Article  Google Scholar 

  • COMSOL Multiphysics (2015) User’s guide, version 5.2

  • Dascalu C (2009) A two-scale damage model with material length. C R Mec 337:645–652

    Article  Google Scholar 

  • Dascalu C (2016) Dynamic localization of damage and microstructural length influence. Int J Damage Mech. doi:10.1177/1056789516651692

  • Dascalu C (2017) Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech Mater. http://dx.doi.org/10.1016/j.mechmat.2017.03.008

  • Dascalu C, Bilbie G, Agiasofitou E (2008) Damage and size effect in elastic solids: a homogenization approach. Int J Solids Struct 45:409–430

    Article  Google Scholar 

  • Dascalu C, Dobrovat A, Tricarico M (2010a) On a 3D micromechanical damage model. Int J Fract 166:153–162

  • Dascalu C, François B, Keita O (2010b) A two-scale model for subcritical damage propagation. Int J Solids Struct 47:493–502

  • Dobrovat A, Dascalu C, Hall S (2015) Computational modeling of damage based on micro-crack kinking. Int J Multiscale Comput Eng 13:201–217

    Article  Google Scholar 

  • Dubé JF, Pijaudier-Cabot G, La Borderie C (1996) Rate dependent damage model for concrete in dynamics. J Eng Mech 122:939–947

    Article  Google Scholar 

  • Feng XQ, Gross D (2000) Three-dimensional micromechanical model for quasi-brittle solids with residual strains under tension. Int J Damage Mech 9:79–110

    Article  Google Scholar 

  • Fish J (2014) Practical multiscaling. Wiley, New York

    Google Scholar 

  • François B, Dascalu C (2010) A two-scale time-dependent damage model based on non-planar growth of micro-cracks. J Mech Phys Solids 58:1928–1946

    Article  Google Scholar 

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gambin B, Telega JJ (2000) Effective properties of elastic solids with randomly distributed microcracks. Mech Res Commun 27(6):697–706

    Article  Google Scholar 

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93(10):105504

    Article  Google Scholar 

  • Jain JR, Ghosh S (2009) Damage evolution in composites with a homogenization-based continuum damage mechanics model. Int J Damage Mech 18:533–568

    Article  Google Scholar 

  • Ju JW, Lee X (1991) Micromechanical damage models for brittle materials. J Eng Mech 117:1495–1536

    Article  Google Scholar 

  • Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24):245510

    Article  Google Scholar 

  • Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87(4):45501

    Article  Google Scholar 

  • Keita O, Dascalu C, François B (2014) A two-scale model for dynamic damage evolution. J Mech Phys Solids 64:170–183

    Article  Google Scholar 

  • Lee K, Moorthy S, Ghosh S (1999) Multiple scale computational model for damage in composite materials. Comput Method Appl Mech Eng 172:175–201

    Article  Google Scholar 

  • Linder C, Raina A (2013) A strong discontinuity approach on multiple levels to model solids at failure. Comput Method Appl Mech Eng 253:558–583

    Article  Google Scholar 

  • Markenscoff X, Dascalu C (2012) Asymptotic homogenization analysis for damage amplification due to singular interaction of microcracks. J Mech Phys Solids 60:1478–1485

    Article  Google Scholar 

  • MATLAB Release (2015) The MathWorks, Inc., Natick, MA, USA

  • Miller O, Freund LB, Needleman A (1999) Energy dissipation in dynamic fracture of brittle materials. Model Simul Mater Sci Eng 7:573–586

    Article  Google Scholar 

  • Nemat-Nasser S, Obata M (1988) A microcrack model of dilatancy in brittle materials. ASME J Appl Mech 55:24–35

    Article  Google Scholar 

  • Paliwal B, Ramesh KT (2008) An interacting micro-crack damage model for failure of brittle materials under compression. J Mech Phys Solids 56:896–923

    Article  Google Scholar 

  • Pandolfi A, Conti S, Ortiz M (2006) A recursive-faulting model of distributed damage in confined brittle materials. J Mech Phys Solids 54:1972–2003

    Article  Google Scholar 

  • Paulino GH, Yin HM, Sun LZ (2006) Micromechanics-based interfacial debonding model for functionally graded materials with particle interactions. Int J Damage Mech 15:267–288

    Article  Google Scholar 

  • Prat P, Bazant ZP (1996) Tangential stiffness of elastic materials with systems of growing or closing cracks. J Mech Phys Solids 45:611–636

    Article  Google Scholar 

  • Rabczuk T, Song J-H, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76:730–741

    Article  Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Boston

    Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26:65–80

  • Ravi-Chandar K, Knauss WG (1984b) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26:141–154

    Article  Google Scholar 

  • Ren X, Chen JS, Li J, Slawson TR, Roth MJ (2011) Micro-cracks informed damage models for brittle solids. Int J Solids Struct 48:1560–1571

    Article  Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, vol 127., Lecture notes in physicsSpringer, Berlin

    Google Scholar 

  • Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Lett Nat 397:333–335

    Article  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117–2120

    Article  Google Scholar 

  • Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91(1):75–95

    Article  Google Scholar 

  • Suffis A, Lubrecht TAA, Combescure A (2003) Damage model with delay effect. Analytical and numerical studies of the evolution of the characteristic damage length. Int J Solids Struct 40:3463–3476

    Article  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  • Wang X, Santare MH, Gazonas GA (2009) Anisotropic effective moduli of microcracked materials under antiplane loading. Eng Fract Mech 76:1910–1919

    Article  Google Scholar 

  • Wang W, Shao JF, Zhu QZ, Xu WY (2015) A discrete viscoplastic damage model for time-dependent behaviour of quasi-brittle rocks. Int J Damage Mech 24:21–40

    Article  Google Scholar 

  • Willoughby N, Parnell WJ, Hazel AL, Abrahams ID (2012) Homogenization methods to approximate the effective response of random fibre-reinforced composites. Int J Solids Struct 49:1421–1433

    Article  Google Scholar 

  • Wrzesniak A, Dascalu C, Besuelle P (2015) A two-scale time-dependent model of damage: influence of micro-cracks friction. Eur J Mech A Solids 49:345–361

    Article  Google Scholar 

  • Xu X-P, Needleman A (1994) Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  Google Scholar 

  • Zhang Z, Paulino GH, Celes W (2007) Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int J Numer Methods Eng 72:893–923

    Article  Google Scholar 

  • Zhou F, Molinari JF, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72:1383–1410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dascalu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiezo, M.K., Dascalu, C. Antiplane two-scale model for dynamic failure. Int J Fract 206, 195–214 (2017). https://doi.org/10.1007/s10704-017-0208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0208-0

Keywords

Navigation