Skip to main content
Log in

Why do cracks branch? A peridynamic investigation of dynamic brittle fracture

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper we review the peridynamic model for brittle fracture and use it to investigate crack branching in brittle homogeneous and isotropic materials. The peridynamic simulations offer a possible explanation for the generation of dynamic instabilities in dynamic brittle crack growth and crack branching. We focus on two systems, glass and homalite, often used in crack branching experiments. After a brief review of theoretical and computational models on crack branching, we discuss the peridynamic model for dynamic fracture in linear elastic–brittle materials. Three loading types are used to investigate the role of stress waves interactions on crack propagation and branching. We analyze the influence of sample geometry on branching. Simulation results are compared with experimental ones in terms of crack patterns, propagation speed at branching and branching angles. The peridynamic results indicate that as stress intensity around the crack tip increases, stress waves pile-up against the material directly in front of the crack tip that moves against the advancing crack; this process “deflects” the strain energy away from the symmetry line and into the crack surfaces creating damage away from the crack line. This damage “migration”, seen as roughness on the crack surface in experiments, modifies, in turn, the strain energy landscape around the crack tip and leads to preferential crack growth directions that branch from the original crack line. We argue that nonlocality of damage growth is one key feature in modeling of the crack branching phenomenon in brittle fracture. The results show that, at least to first order, no ingredients beyond linear elasticity and a capable damage model are necessary to explain/predict crack branching in brittle homogeneous and isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Abraham FF, Brodbeck D, Rudge WE, Xu X (1997) A molecular dynamics investigation of rapid fracture mechanics. J Mech Phys Solids 45(9):1595–1619

    Article  Google Scholar 

  • Abraham F (2005) Unstable crack motion is predictable. J Mech Phys Solids 53:1071–1078

    Article  Google Scholar 

  • Anthony SR, Chubb JP, Congleton J (1970) The crack-branching velocity. Philos Mag 22(180):1201–1216

    Article  Google Scholar 

  • Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85:118–121

    Article  Google Scholar 

  • Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Article  Google Scholar 

  • Beauchamp EK (1996) Mechanisms for hackle formation and crack branching. In: Fractography of glasses and ceramics III, vol. 64 of ceramic transactions. American Ceramic Society, pp 409–445

  • Bhate DN, Kumar A, Bower AF (2000) Diffuse interface model for electromigration and stress voiding. J Appl Phys 87(4):1712–1721

    Article  Google Scholar 

  • Bobaru F (2007) Influence of van der waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach. Model Simul Mater Sci Eng 15(5):397

    Article  Google Scholar 

  • Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1d peridynamics. Int J Numer Meth Eng 77(6):852–877

    Article  Google Scholar 

  • Bobaru F, Ha YD, Hu W (2012) Damage progression from impact in layered glass modeled with peridynamics. Open Eng 2(4):551–561

    Article  Google Scholar 

  • Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2d peridynamics. Int J Multiscale Comput Eng 9(6):635–660

    Article  Google Scholar 

  • Bobaru F, Hu W (2012) The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int J Fract 176(2):215–222

    Article  Google Scholar 

  • Bolander JE, Saito S (1998) Fracture analyses using spring networks with random geometry. Eng Fract Mech 61(5):569–591

    Article  Google Scholar 

  • Bonamy D, Ravi-Chandar K (2003) Interaction of shear waves and propagating cracks. Phys Rev Lett 91(23):235502

    Article  Google Scholar 

  • Bonamy D, Ravi-Chandar K (2005) Dynamic crack response to a localized shear pulse perturbation in brittle amorphous materials: on crack surface roughening. Int J Fract 134(1):1–22

    Article  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  Google Scholar 

  • Bouchbinder E, Mathiesen J, Procaccia I (2005) Branching instabilities in rapid fracture: dynamics and geometry. Phys Rev E 71:056118

    Article  Google Scholar 

  • Bouchbinder E, Livne A, Fineberg J (2010) Weakly nonlinear fracture mechanics: experiments and theory. Int J Fract 162(1–2):3–20

    Article  Google Scholar 

  • Bouchbinder E, Tamar Goldman T, Fineberg J (2014) The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Rep Prog Phys 77(4):046501

    Article  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  Google Scholar 

  • Bourdin B, Larsen CJ, Richardson CL (2011) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168:133–143

    Article  Google Scholar 

  • Bowden FP, Brunton JH, Field JE, Heyes AD (1967) Controlled fracture of brittle solids and interruption of electrical current. Nature 216:38–42

    Article  Google Scholar 

  • Broberg K (1999) Cracks and fracture. Academic Press, San Diego

    Google Scholar 

  • Buehler MJ, Gao H (2006) Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439(7074):307–310

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20):2899–2938

    Article  Google Scholar 

  • Chen Z, Bobaru F (2015) Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput Phys Commun 197:51–60

    Article  Google Scholar 

  • Cox BN, Gao H, Gross D, Rittel D (2005) Modern topics and challenges in dynamic fracture. J Mech Phys Solids 53(3):565–596

    Article  Google Scholar 

  • Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  • Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    Article  Google Scholar 

  • Döll W (1975) Investigations of the crack branching energy. Int J Fract 11(1):184–186

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519–525

    Article  Google Scholar 

  • Eringen AC (2002) Nonlocal continuum field theories. Springer-Verlag, New York

    Google Scholar 

  • Eshelby J (1969) The elastic field of a crack extending non-uniformly under general anti-plane loading. J Mech Phys Solids 17(3):177–199

    Article  Google Scholar 

  • Field JE (1971) Brittle fracture: its study and application. Contemp Phys 12(1):1–31

    Article  Google Scholar 

  • Fineberg J, Bouchbinder E (2015) Recent developments in dynamic fracture: some perspectives. Int J Fract 1–25. doi:10.1007/s10704-015-0038-x

  • Fischer-Cripps AC, Mustafaev I (2000) Introduction to contact mechanics. Springer, Berlin

    Google Scholar 

  • Freund LB (1972) Crack propagation in an elastic solid subjected to general loadingi. constant rate of extension. J Mech Phys Solids 20(3):129–140

    Article  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gao H (1996) A theory of local limiting speed in dynamic fracture. J Mech Phys Solids 44(9):1453–1474

    Article  Google Scholar 

  • Gerstle W, Sau N, Silling SA (2005) Peridynamic modeling of plain and reinforced concrete structures. In: 18th International conference on structural mechanics in reactor technology (SMiRT 18). Biejing, China, no. SMiRT18-B01–2

  • Ghajari M, Iannucci L, Curtis P (2014) A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput Methods Appl Mech Eng 276:431–452

    Article  Google Scholar 

  • Guan PC, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047

    Article  Google Scholar 

  • Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244

    Article  Google Scholar 

  • Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244

    Article  Google Scholar 

  • Ha YD, Bobaru F (2011a) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156–1168

    Article  Google Scholar 

  • Hauch JA, Holland D, Marder MP, Swinney HL (1999) Dynamic fracture in single crystal silicon. Phys Rev Lett 82:3823–3826

    Article  Google Scholar 

  • Hofacker M, Miehe C (2013) A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns. Int J Numer Meth Eng 93(3):276–301

    Article  Google Scholar 

  • Hu W, Ha YD, Bobaru F (2011) Modeling dynamic fracture and damage in fiber-reinforced composites with peridynamics. Int J Multiscale Comput Eng 9(6):707–726

    Article  Google Scholar 

  • Hu W, Ha Y, Bobaru F, Silling S (2012a) The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int J Fract 176(2):195–206

    Article  Google Scholar 

  • Hu W, Ha YD, Bobaru F (2012b) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217:247–261

    Article  Google Scholar 

  • Hu W, Wang Y, Yu J, Yen C-F, Bobaru F (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165

    Article  Google Scholar 

  • Hu Y, Yu Y, Wang H (2014) Peridynamic analytical method for progressive damage in notched composite laminates. Compos Struct 108:801–810

    Article  Google Scholar 

  • Hu Y, Yu Y, Wang H (2014) Peridynamic analytical method for progressive damage in notched composite laminates. Compos Struct 108:801–810

    Article  Google Scholar 

  • Hull D (1994) The effect of mixed mode I/III on crack evolution in brittle solids. Int J Fract 70(1):59–79

    Article  Google Scholar 

  • Hull D (1999) Fractography: observing, measuring and interpreting fracture structure topography. Cambridge University Press, Cambridge

    Google Scholar 

  • Jirásek M, Bazǎnt ZP (1995) Particle model for quasibrittle fracture and application to sea ice. J Eng Mech 121(9):1016–1025

    Article  Google Scholar 

  • Johnson E (1992) Process region changes for rapidly propagating cracks. Int J Fract 55(1):47–63

    Article  Google Scholar 

  • Karma A, Kessler DA, Levine H (2001) Phase-field model of mode III dynamic fracture. Phys Rev Lett 87:045501

    Article  Google Scholar 

  • Kermode JR, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne MC, Csanyi G, De Vita A (2008) Low-speed fracture instabilities in a brittle crystal. Nature 455:1224–1227

    Article  Google Scholar 

  • Kunin IA (1982) Elastic media with microstructure I. One-dimensional models. Springer, Berlin

    Book  Google Scholar 

  • Le Q, Bobaru F (2015) Surface corrections in peridynamic models for elasticity and fracture. In review

  • Livne A, Ben-David O, Fineberg J (2007) Oscillations in rapid fracture. Phys Rev Lett 98:124301

    Article  Google Scholar 

  • Macek RW, Silling S (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    Article  Google Scholar 

  • Madenci E, Oterkus E (2014) Peridynamics theory and its applications. Springer, New York

    Book  Google Scholar 

  • Marder M, Gross S (1995) Origin of crack tip instabilities. J Mech Phys Solids 43(1):1–48

    Article  Google Scholar 

  • Meyers M (1994) Dynamic behavior of materials. Wiley, New York

    Book  Google Scholar 

  • Morrissey J, Rice J (2000) Perturbative simulations of crack front waves. J Mech Phys Solids 48(6–7):1229–1251

    Article  Google Scholar 

  • Negri M (2006) A non-local approximation of free discontinuity problems in SBV and SBD. Calc Var Partial Differ Equ 25(1):33–62

    Article  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44(9):1267–1282

    Article  Google Scholar 

  • Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffusion. J Comput Phys 265:71–96

    Article  Google Scholar 

  • Oterkus S, Madenci E (2012) Peridynamic analysis of fiber-reinforced composite materials. J Mech Mater Struct 7(1):45–84

    Article  Google Scholar 

  • Ožbolt J, Sharma A, Reinhardt H-W (2011) Dynamic fracture of concrete compact tension specimen. Int J Solids Struct 48:1534–1543

    Article  Google Scholar 

  • Ožbolt J, Bošnjak J, Sola E (2013) Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int J Solids Struct 50:4270–4278

    Article  Google Scholar 

  • Pandolfi A, Li B, Ortiz M (2013) Modeling fracture by material-point erosion. Int J Fract 184:3–16

    Article  Google Scholar 

  • Pandolfi A, Ortiz M (2012) An eigenerosion approach to brittle fracture. Int J Numer Meth Eng 92(8):694–714

    Article  Google Scholar 

  • Pons AJ, Karma A (2010) Helical crack-front instability in mixed-mode fracture. Nature 464(7285):85–89

    Article  Google Scholar 

  • Procaccia I, Zylberg J (2013) Propagation mechanism of brittle cracks. Phys Rev E 87:012801

    Article  Google Scholar 

  • Rabczuk T (2013) Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Appl Math 2013(849231):38

    Google Scholar 

  • Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343

    Article  Google Scholar 

  • Rahman M, Michelitsch T (2006) A note on the formula for the Rayleigh wave speed. Wave Motion 43(3):272–276

    Article  Google Scholar 

  • Ramulu M, Kobayashi AS (1983) Dynamic crack curving—a photoelastic evaluation. Exp Mech 23(1):1–9

    Article  Google Scholar 

  • Ramulu M, Kobayashi AS (1985) Mechanics of crack curving and branchinga dynamic fracture analysis. Int J Fract 27:187–201

    Article  Google Scholar 

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Amsterdam

    Google Scholar 

  • Ravi-Chandar K, Knauss WG (1982) Dynamic crack tip stresses under stress wave loading: a comparison of theory and experiment. Int J Fract 20:209–222

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984b) An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks. Int J Fract 26(3):189–200

    Article  Google Scholar 

  • Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45(4):535–563

    Article  Google Scholar 

  • Rogula D (1982) Nonlocal theory of material media. Springer, Berlin

    Book  Google Scholar 

  • Rösch F, Trebin H-R (2009) Brittle fracture in a complex metallic compound from an atomistic viewpoint: Nbcr 2, a case study. Europhys Lett 85(5):56002

    Article  Google Scholar 

  • Seleson P (2014) Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput Methods Appl Mech Eng 282:184–217

    Article  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25):5096

  • Sharon E, Cohen G, Fineberg J (2002) Crack front waves and the dynamics of a rapidly moving crack. Phys Rev Lett 88:085503

    Article  Google Scholar 

  • Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128

    Article  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17):1526–1535

    Article  Google Scholar 

  • Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non Linear Mech 40(2–3):395–409

    Article  Google Scholar 

  • Sommer E (1969) Formation of fracture ’lances’ in glass. Eng Fract Mech 1(3):539–546

    Article  Google Scholar 

  • Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42(2):239–250

    Article  Google Scholar 

  • Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Phil Mag 91(1):75–95

    Article  Google Scholar 

  • Streit R, Finnie I (1980) An experimental investigation of crack-path directional stability. Exp Mech 20(1):17–23

    Article  Google Scholar 

  • Stroh AN (1957) A theory of the fracture of metals. Adv Phys 6(24):418–465

    Article  Google Scholar 

  • Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52(2):99–105

    Article  Google Scholar 

  • Xu J, Askari E, Weckner O, Silling SA (2008) Peridynamic analysis of impact damage in composite laminates. J Aerosp Eng 21(3):187–194

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

  • Yoffe EH (1951) The moving griffith crack. Phil Mag 42(330):739–750

    Google Scholar 

  • Zhou SJ, Lomdahl PS, Thomson R, Holian BL (1996) Dynamic crack processes via molecular dynamics. Phys Rev Lett 76(13):2318

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by ARO/ARL (Grant Number W911NF1010431), program manager Dr. Asher Rubinstein (ARO) and Dr. Chian-Fong Yen (ARL), and by the AFOSR’s MURI Center for Material Failure Prediction Through Peridynamics, program managers Dr. David Stargel, Dr. Ali Sayir, and Dr. Fariba Fahroo. We are grateful for all their support without which this research would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Bobaru.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 3170 KB)

Supplementary material 2 (mpg 2319 KB)

Supplementary material 3 (mpg 3476 KB)

Supplementary material 4 (mpg 2501 KB)

Supplementary material 5 (mpg 2898 KB)

Supplementary material 6 (mpg 742 KB)

Supplementary material 7 (mpg 984 KB)

Supplementary material 8 (mpg 417 KB)

Supplementary material 9 (mpg 2069 KB)

Supplementary material 10 (mpg 2069 KB)

Supplementary material 11 (mpg 978 KB)

Supplementary material 12 (mpg 2877 KB)

Supplementary material 13 (mpg 2900 KB)

Supplementary material 14 (mpg 2884 KB)

Supplementary material 15 (mpg 2591 KB)

Supplementary material 16 (mpg 3608 KB)

Supplementary material 17 (mpg 2884 KB)

Supplementary material 18 (mpg 6470 KB)

Supplementary material 19 (mpg 6665 KB)

Supplementary material 20 (mpg 2482 KB)

Supplementary material 21 (mpg 2730 KB)

Supplementary material 22 (mpg 2589 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobaru, F., Zhang, G. Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196, 59–98 (2015). https://doi.org/10.1007/s10704-015-0056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0056-8

Keywords

Navigation