Skip to main content
Log in

Analysis of a nonlinear crack in a piezoelectric half-space via displacement discontinuity method

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, we derive the exact closed-form fundamental solutions due to uniform extended displacement discontinuities over a triangular element in a piezoelectric half-space. Using the triangular elements to partition the penny-shaped crack, the triangular element fundamental solutions are verified by comparing with the existing analytical solution associated with the penny-shaped crack. The polarization saturation model is then applied to an elliptical crack in the piezoelectric half-space, and the resulting nonlinear fracture problem is solved by combing the triangular element fundamental solutions and the displacement discontinuity method. The electric yielding zone and the extended field intensity factors are obtained by an iterative approach. The effects of the applied mechanical load and electric displacement, the polarization saturation in the yielding zone, and the aspect ratio of the elliptical crack on the yielding zone size and field intensity factors are discussed through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bhargava RR, Jangid K (2013) Strip-saturation model for piezoelectric plane weakened by two collinear cracks with coalesced interior zones. Appl Math Model 37:4093–4102

    Article  Google Scholar 

  • Chen WQ, Lim CW (2005) 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium. Int J Fract 131:231–246

    Article  Google Scholar 

  • Chen WQ, Shioya T, Ding HJ (1999) Integral equations for missed boundary value problem of a piezoelectric half-space and the application. Mech Res Commun 26:583–590

    Article  Google Scholar 

  • Chiang CR (2014a) Some half-space problems of cubic piezoelectric materials. Int J Solids Struct 51:1046–1051

    Article  Google Scholar 

  • Chiang CR (2014b) Subsurface crack problems in a cubic piezoelectric material. Eng Fract Mech 131:656–668

    Article  Google Scholar 

  • Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. Int J Numer Methods Eng 10:301–343

    Article  Google Scholar 

  • Ding HJ, Chen B, Liang J (1997) On the green’s functions for two-phase transversely isotropic piezoelectric media. Int J Solids Structures 33:3041–3057

    Google Scholar 

  • Dugdale DS (1960) Yielding of steel containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  • Dunn ML (1994) The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Eng Fract Mech 48:25–39

    Article  Google Scholar 

  • Fan CY, Zhao MH, Zhou YH (2009) Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J Mech Phys Solids 57:1527– 1544

    Article  Google Scholar 

  • Fan CY, Guo ZH, Dang HY, Zhao MH (2014a) Extended displacement discontinuity method for nonlinear analysis of penny-shaped cracks in three-dimensional piezoelectric media. Eng Anal Bound Elem 38:8–16

    Article  Google Scholar 

  • Fan CY, Dang HY, Zhao MH (2014b) Nonlinear solution of the PS model for a semi-permeable crack in a 3D piezoelectric medium. Eng Anal Bound Elem 46:23–29

    Article  Google Scholar 

  • Gao HJ, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielding crack in a piezoelectric ceramic. J Mech Phys Solids 45:491–510

    Article  Google Scholar 

  • Linder C (2012) An analysis of the exponential electric displacement saturation model in fracturing piezoelectric ceramics. Technische Mechanik 32:53–69

    Google Scholar 

  • Linder C (2014) A complex variable solution based analysis of electric displacement saturation for a cracked piezoelectric material. J Appl Mech 81:091006

    Article  Google Scholar 

  • Linder C, Miehe C (2012) Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics. J Mech Phys Solids 60:882–903

    Article  Google Scholar 

  • Loboda V, Lapusta Y, Sheveleva A (2007) Electro-mechanical pre-fracture zones for an electrically permeable interface crack in a piezoelectric bimaterial. Int J Solids Struct 44:5538–5553

  • Pan E (1999) A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng Anal Bound Elem 23:67–76

    Article  Google Scholar 

  • Pak YE (1992) Linear electro-elastic fracture mechanics of piezoelectric materials. Int J Fract 54:79–100

    Article  Google Scholar 

  • Phongtinnaboot W, Rungamornrat J, Chintanapakdee C (2013) Modeling of cracks in 3D piezoelectric finite media by weakly singular SGBEM. Eng Anal Bound Elem 35:319–329

    Article  Google Scholar 

  • Qin TY, Yu YS, Noda NA (2007) Finite-part integral and boundary element method to solve three-dimensional crack problems in piezoelectric materials. Int J Solids Struct 44:4770–4783

    Article  Google Scholar 

  • Ru CQ (1999) Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramic. Int J Solids Struct 36:869–883

    Article  Google Scholar 

  • Ru CQ, Mao X (1999) Conducting cracks in a piezoelectric ceramic of limited electric polarization. J Mech Phys Solids 47:2125–2146

    Article  Google Scholar 

  • Shang FL, Kuna M, Abendroth M (2003) Finite element analyses of three-dimensional crack problems in piezoelectric structures. Eng Fract Mech 70:143–160

    Article  Google Scholar 

  • Sosa HA (1992) On the fracture mechanics of piezoelectric solids. Int J Solids Struct 29:2613–2622

    Article  Google Scholar 

  • Sosa H, Khutoryansky N (1996) New developments concerning piezoelectric materials with defects. Int J Solids Struct 33:3399–3414

    Article  Google Scholar 

  • Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  Google Scholar 

  • Wang BL, Mai YQ (2003) Crack tip field in piezoelectric/piezomagnetic media. Eur J Mech A Solid 22:591–602

    Article  Google Scholar 

  • Wang ZK, Huang SH (1995) Fields near elliptical crack tip in piezoelectric ceramics. Eng Fract Mech 51:447–456

    Article  Google Scholar 

  • Zhang TY, Zhao MH, Tong P (2002) Fracture of piezoelectric ceramics. Adv Appl Mech 38:147–298

    Article  Google Scholar 

  • Zhao MH, Liu YJ, Cheng CJ (1994) Boundary-integral equations and the boundary-element method for three-dimensional fracture mechanics. Eng Anal Bound Elem 13:333–338

    Article  Google Scholar 

  • Zhao MH, Shen YP, Liu YJ, Liu GN (1999) Crack analysis in semi-infinite transversely isotropic piezoelectric solid. II. Penny-shaped crack near the surface. Theor Appl Fract Mech 32:233–240

    Article  Google Scholar 

  • Zhao MH, Shen YP, Liu YJ, Liu GN (1997a) Isolated crack in three-dimensional piezoelectric solid. I. Solution by Hankel transform. Theor Appl Fract Mech 26:129–139

    Article  Google Scholar 

  • Zhao MH, Shen YP, Liu YJ, Liu GN (1997b) Isolated crack in three-dimensional piezoelectric solid—II: stress intensity factors for circular crack. Theor Appl Fract Mech 26:141–149

    Article  Google Scholar 

  • Zhao MH, Zhang QY, Pan E, Fan CY (2014) Fundamental solutions and numerical modeling of an elliptical crack with polarization saturation in a transversely isotropic piezoelectric medium. Eng Fract Mech 131:627–642

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Nos. 11172273, 11272290), the Construction Project of Key Laboratory in Henan Colleges, and Henan Bairen Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernian Pan.

Appendices

Appendix 1

The coefficients \(L_{f} ,\;L_{h} ,\;L_{fk}^{i} ,\;L_{hk}^{ij} ,\;L_{fk\alpha }^{i}\) and \(\;L_{hk\alpha }^{ij} (i, j=1, 2, 3, k=1, 2, 3, \alpha =1, 2)\) in Eqs. (3a), (3b), (3c) and (3d) are listed below:

$$\begin{aligned}&L_{f} =c_{44} \omega _{41} s_{4} D_{4} ,\quad L_{h} =c_{44} \omega _{41} s_{4} D_{44} ,\\&L_{f1}^{i} =\omega _{i1} (c_{44} A_{i} +c_{44} D_{i} s_{i} -e_{15} B_{i} ),\\&L_{f2}^{i} =\omega _{i1} (c_{33} A_{i} -e_{33} B_{i} s_{i} -c_{13} D_{i} ), \\&L_{f3}^i =\omega _{i1} (e_{33} A_{i} s_{i} +\varepsilon _{33} B_{i} s_{i} -e_{31} D_{i} ),\\&L_{h1}^{ij} =\omega _{i1} (c_{44} A_{ij} +c_{44} D_{ij} s_{i} -e_{15} B_{ij} ),\\&L_{h2}^{ij} =\omega _{i1} (c_{33} A_{ij} -e_{33} B_{ij} s_{i} -c_{13} D_{ij} ),\\&L_{h3}^{ij} =\omega _{i1} (e_{33} A_{i} s_{i} +\varepsilon _{33} B_{i} s_{i} -e_{31} D_{i} ), \\&L_{f11}^{i} =\vartheta _{i1} (c_{44} A_{i} +c_{44} D_{i} s_{i} -e_{15} B_{i} ),\\&L_{f12}^{i} =\vartheta _{i2} (c_{44} A_{i} +c_{44} D_{i} s_{i} -e_{15} B_{i} ), \\&L_{f21}^{i} =\vartheta _{i1} (c_{33} A_{i} -e_{33} B_{i} s_{i} -c_{13} D_{i} ),\\&L_{f22}^{i} =\vartheta _{i2} (c_{33} A_{i} -e_{33} B_{i} s_{i} -c_{13} D_{i} ), \\&L_{f31}^{i} =\vartheta _{i1} (e_{33} A_{i} s_{i} +\varepsilon _{33} B_{i} s_{i} -e_{31} D_{i} ),\\&L_{f32}^{i} =\vartheta _{i2} (e_{33} A_{i} s_{i} +\varepsilon _{33} B_{i} s_{i} -e_{31} D_{i} ), \\&L_{h11}^{ij} =\vartheta _{i1} (c_{44} A_{ij} +c_{44} D_{ij} s_{i} -e_{15} B_{ij} ),\\&L_{h12}^{ij} =\vartheta _{i2} (c_{44} A_{ij} +c_{44} D_{ij} s_{i} -e_{15} B_{ij} ), \\&L_{h21}^{ij} =\vartheta _{i1} (c_{33} A_{ij} -e_{33} B_{ij} s_{i} -c_{13} D_{ij} ),\\&L_{h22}^{ij} =\vartheta _{i2} (c_{33} A_{ij} -e_{33} B_{ij} s_{i} -c_{13} D_{ij} ),\\&L_{h31}^{ij} =\vartheta _{i1} (e_{33} A_{ij} s_{i} +\varepsilon _{33} B_{ij} s_{i} -e_{31} D_{ij} ),\\&L_{h32}^{ij} =\vartheta _{i2} (e_{33} A_{ij} s_{i} +\varepsilon _{33} B_{ij} s_{i} -e_{31} D_{ij} ), \end{aligned}$$

where \(s_{i}\) are the eigenvalues, \(c_{ij}, e_{ij}, \varepsilon _{ij}\) are the elastic constants, PE constants and dielectric constants; \(A_{i }(A_{ij}), B_{i }(B_{ij}), D_{i }(D_{ij}), \omega _{i1}, \vartheta _{i1}\) and \(\vartheta _{i2}\) are the material-related constants listed in Ding et al. (1997). Furthermore, the subscripts f and h indicate the parameters associated with full- and half-spaces respectively.

Appendix 2

The coefficients in Eqs. (6a), (6b), (6c) and (6d) are listed below (for \(k=1-5\) and \(i=1-3\)):

$$\begin{aligned} M_{fk}^{i} =\sum _{l=1}^{6} {N_{kl}^{i} } , \end{aligned}$$
(27)

where the subscript f on the left-hand side of Eq. (27) indicates the full-space parameters, and

$$\begin{aligned} N_{11}^{i}= & {} \frac{(y_{1} -y_{2} ) \left[ {(y-y_{1} )(x(y_{2} -y_{1} )+y(x_{1} -x_{2} )+(x_{2} y_{1} -x_{1} y_{2} ))+(x_{1} -x_{2} ) \bar{{z}}_{i}^{2} } \right] }{G_{1}^{i} },\nonumber \\ N_{12}^{i}= & {} \frac{(y_{1} -y_{3} ) \left[ {(y-y_{1} )(x(y_{1} -y_{3} )+y(x_{3} -x_{1} )+(x_{1} y_{3} -x_{3} y_{1} )) +(x_{3} -x_{1} )\bar{{z}}_{i}^{2} } \right] }{G_{2}^{i} },\nonumber \\ N_{13}^{i}= & {} \frac{(y_{2} -y_{1} )\left[ {(y-y_{2} ) (x(y_{2} -y_{1} )+y(x_{1} -x_{2} )+(x_{2} y_{1} -x_{1} y_{2} )) +(x_{1} -x_{2} )\bar{{z}}_{i}^{2}} \right] }{G_{3}^{i}},\nonumber \\ N_{14}^{i}= & {} \frac{(y_{2} -y_{3} ) \left[ {(y-y_{2} )(x(y_{3} -y_{2} )+y(x_{2} -x_{3} )+(x_{3} y_{2} -x_{2} y_{3} )) +(x_{2} -x_{3} )\bar{{z}}_{i}^{2}} \right] }{G_{4}^{i}},\nonumber \\ N_{15}^{i}= & {} \frac{(y_{3} -y_{1} ) \left[ {(y-y_{3})(x(y_{1} -y_{3} ) +y(x_{3} -x_{1} )+(x_{1} y_{3} -x_{3} y_{1} )) +(x_{3} -x_{1} )\bar{{z}}_{i}^{2} } \right] }{G_{5}^{i} },\nonumber \\ N_{16}^{i}= & {} \frac{(y_{3} -y_{2} ) \left[ {(y-y_{3} )(x(y_{3} -y_{2} )+y(x_{2} -x_{3} )+(x_{3} y_{2} -x_{2} y_{3} )) +(x_{2} -x_{3} )\bar{{z}}_{i}^{2} } \right] }{G_{6}^{i} }, \end{aligned}$$
(28)
$$\begin{aligned} N_{21}^{i}= & {} \frac{(x_1 -x_2 )\left[ {(x-x_1 )(x(y_2 -y_1 )+y(x_1 -x_2 )+(x_2 y_1 -x_1 y_2 ))+(y_1 -y_2 )\bar{{z}}_i^2 } \right] }{G_1^i }, \nonumber \\ N_{22}^{i}= & {} \frac{(x_{1} -x_{3} )\left[ {(x-x_{1} ) (x(y_{1} -y_{3} )+y(x_{3} -x_{1} )+(x_{1} y_{3} -x_{3} y_{1} )) +(y_{1} -y_{3} ) \bar{{z}}_{i}^{2} } \right] }{G_{2}^{i} },\nonumber \\ N_{23}^{i}= & {} \frac{(x_{2} -x_{1}) \left[ {(x-x_{2} )(x(y_{2} -y_{1} )+y(x_{1} -x_{2} )+(x_{2} y_{1} -x_{1} y_{2} ))+(y_{2} -y_{1} )\bar{{z}}_{i}^{2}} \right] }{G_{3}^{i}},\nonumber \\ N_{24}^i= & {} \frac{(x_{2} -x_{3} ) \left[ {(x-x_{2} )(x(y_{3} -y_{2} )+y(x_{2} -x_{3} )+(x_{3} y_{2} -x_{2} y_{3} ))+(y_{2} -y_{3} ) \bar{{z}}_{i}^{2} } \right] }{G_{4}^{i} },\nonumber \\ N_{25}^{i}= & {} \frac{(x_{3} -x_{1} ) \left[ {(x-x_{3} )(x(y_{1} -y_{3} )+y(x_{3} -x_{1} )+(x_{1} y_{3} -x_{3} y_{1} )) +(y_{3} -y_{1} )\bar{{z}}_{i}^{2} } \right] }{G_{5}^{i} },\nonumber \\ N_{26}^{i}= & {} \frac{(x_{3} -x_{2} ) \left[ {(x-x_{3} )(x(y_{3} -y_{2} )+y(x_{2} -x_{3} )+(x_{3} y_{2} -x_{2} y_{3}))+(y_{3} -y_{2} ) \bar{{z}}_{i}^{2}} \right] }{G_{6}^{i}}, \end{aligned}$$
(29)
$$\begin{aligned} N_{31}^{i}= & {} \frac{(x_{1} -x_{2} )\left[ {(y-y_{1} ) (x(y_{2} -y_{1} )+y(x_{1} -x_{2} )+(x_{2} y_{1} -x_{1} y_{2} )) +(x_{1} -x_{2} )\bar{{z}}_{i}^{2}} \right] }{G_{1}^{i} },\nonumber \\ N_{32}^{i}= & {} \frac{(x_{1} -x_{3} )\left[ {(y-y_{1} ) (x(y_{1} -y_{3} )+y(x_{3} -x_{1} )+(x_{1} y_{3} -x_{3} y_{1} ))+(x_{3} -x_{1} )\bar{{z}}_{i}^{2} } \right] }{G_{2}^{i} },\nonumber \\ N_{33}^{i}= & {} \frac{(x_{2} -x_{1} ) \left[ {(y-y_{2} )(x(y_{2} -y_{1} )+y(x_{1} -x_{2} )+(x_{2} y_{1} -x_{1} y_{2} )) +(x_{1} -x_{2} )\bar{{z}}_{i}^{2} } \right] }{G_{3}^{i} },\nonumber \\ N_{34}^{i}= & {} \frac{(x_{2} -x_{3} ) \left[ {(y-y_{2} )(x(y_{3} -y_{2} )+y(x_{2} -x_{3} )+(x_{3} y_{2} -x_{2} y_{3} )) +(x_{2} -x_{3})\bar{{z}}_{i}^{2} } \right] }{G_{4}^{i}},\nonumber \\ N_{35}^{i}= & {} \frac{(x_{3} -x_{1} )\left[ {(y-y_{3} ) (x(y_{1} -y_{3} )+y(x_{3} -x_{1} )+(x_{1} y_{3} -x_{3} y_{1} ))+(x_{3} -x_{1} )\bar{{z}}_{i}^{2} } \right] }{G_5^i },\nonumber \\ N_{36}^{i}= & {} \frac{(x_{3} -x_{2} )\left[ {(y-y_{3} ) (x(y_{3} -y_{2} )+y(x_{2} -x_{3} )+(x_{3} y_{2} -x_{2} y_{3} )) +(x_{2} -x_{3} )\bar{{z}}_{i}^{2} } \right] }{G_{6}^{i}}, \end{aligned}$$
(30)
$$\begin{aligned} N_{41}^{i}= & {} \frac{\bar{{z}}_{i} (y_{1} -y_{2} ) \left[ {(x-x_{1} )(x_{2} -x_{1} )+(y-y_{1} )(y_{2} -y_{1} )} \right] }{G_{1}^{i} }, \nonumber \\ N_{42}^{i}= & {} \frac{\bar{{z}}_{i} (y_{1} -y_{3} ) \left[ {(x-x_{1} )(x_{1} -x_{3} )+(y-y_{1} )(y_{1} -y_{3} )} \right] }{G_{2}^{i} }, \nonumber \\ N_{43}^{i}= & {} \frac{\bar{{z}}_{i} (y_{2} -y_{1}) \left[ {(x-x_{2} )(x_{2} -x_{1} )+(y-y_{2} )(y_{2} -y_{1} )} \right] }{G_{3}^{i} }, \nonumber \\ N_{44}^{i}= & {} \frac{\bar{{z}}_{i} (y_{2} -y_{3} ) \left[ {(x-x_{2} )(x_{3} -x_{2} )+(y-y_{2} )(y_{3} -y_{2} )} \right] }{G_{4}^{i} }, \nonumber \\ N_{45}^{i}= & {} \frac{\bar{{z}}_{i} (y_{3} -y_{1} ) \left[ {(x-x_{3} )(x_{1} -x_{3} )+(y-y_{3} )(y_{1} -y_{3} )} \right] }{G_{5}^{i} }, \nonumber \\ N_{46}^{i}= & {} \frac{\bar{{z}}_{i} (y_{3} -y_{2} ) \left[ {(x-x_{3} )(x_{3} -x_{2} )+(y-y_{3} )(y_{3} -y_{2} )} \right] }{G_{6}^{i}}, \end{aligned}$$
(31)
$$\begin{aligned} N_{51}^{i}= & {} \frac{\bar{{z}}_{i} (x_{1} -x_{2}) \left[ {(x-x_{1} )(x_{2} -x_{1} )+(y-y_{1} )(y_{2} -y_{1} )} \right] }{G_{1}^{i} }, \nonumber \\ N_{52}^{i}= & {} \frac{\bar{{z}}_{i} (x_{1} -x_{3} ) \left[ {(x-x_{1} )(x_{1} -x_{3} )+(y-y_{1} )(y_{1} -y_{3} )} \right] }{G_{2}^{i} }, \nonumber \\ N_{53}^{i}= & {} \frac{\bar{{z}}_{i} (x_{2} -x_{1} ) \left[ {(x-x_{2} )(x_{2} -x_{1} )+(y-y_{2} )(y_{2} -y_{1} )} \right] }{G_{3}^{i} }, \nonumber \\ N_{54}^{i}= & {} \frac{\bar{{z}}_{i} (x_{2} -x_{3} ) \left[ {(x-x_{2} )(x_{3} -x_{2} )+(y-y_{2})(y_{3} -y_{2})} \right] }{G_{4}^{i}}, \nonumber \\ N_{55}^{i}= & {} \frac{\bar{{z}}_{i} (x_{3} -x_{1} ) \left[ {(x-x_{3} )(x_{1} -x_{3} )+(y-y_{3} )(y_{1} -y_{3} )} \right] }{G_{5}^{i} }, \nonumber \\ N_{56}^{i}= & {} \frac{\bar{{z}}_{i} (x_{3} -x_{2} ) \left[ {(x-x_{3} )(x_{3} -x_{2} )+(y-y_{3} )(y_{3} -y_{2} )} \right] }{G_{6}^{i} }, \end{aligned}$$
(32)

In Eqs. (28)–(32),

$$\begin{aligned} G_{1}^{i}= & {} \sqrt{(x-x_{1} )^{2}+(y-y_{1} )^{2}+\bar{{z}}_{i}^{2}}\nonumber \\&\times \left[ {\begin{array}{l} (x(y_{2} -y_{1} )+y(x_{1} -x_{2} )+(x_{2} y_{1} -x_{1} y_{2} ))^{2} \\ \quad +\left( {(x_{1} -x_{2})^{2}+(y_{1} -y_{2} )^{2}} \right) \bar{{z}}_{i}^{2} \\ \end{array}} \right] , \nonumber \\ G_{2}^{i}= & {} \sqrt{(x-x_{1} )^{2}+(y-y_{1} )^{2}+\bar{{z}}_{i}^{2}}\nonumber \\&\times \left[ {\begin{array}{l} \left( {x(y_{1} -y_{3} )+y(x_{3} -x_{1}) +(x_{1} y_{3} -x_{3} y_{1} )} \right) ^{2} \\ \quad +\left( {(x_{1} -x_{3})^{2}+(y_{1} -y_{3})^{2}} \right) \bar{{z}}_{i}^{2}\\ \end{array}} \right] , \nonumber \\ G_{3}^{i}= & {} \sqrt{(x-x_{2} )^{2}+(y-y_{2})^{2}+\bar{{z}}_{i}^{2}}\nonumber \\&\times \left[ {\begin{array}{l} \left( {x(y_{2} -y_{1} )+y(x_{1} -x_{2} ) +(x_{2} y_{1} -x_{1} y_{2} )} \right) ^{2} \\ \quad +\left( {(x_{1} -x_{2} )^{2}+(y_{1} -y_{2})^{2}} \right) \bar{{z}}_{i}^{2} \\ \end{array}} \right] , \nonumber \\ G_{4}^{i}= & {} \sqrt{(x-x_{2} )^{2}+(y-y_{2})^{2}+\bar{{z}}_{i}^{2}}\nonumber \\&\times \left[ {\begin{array}{l} \left( {x(y_{3} -y_{2} )+y(x_{2} -x_{3} ) +(x_{3} y_{2} -x_{2} y_{3} )} \right) ^{2}\\ \quad +\left( {(x_{3} -x_{2} )^{2}+(y_{3} -y_{2} )^{2}} \right) \bar{{z}}_{i}^{2} \\ \end{array}} \right] , \nonumber \\ G_{5}^{i}= & {} \sqrt{(x-x_{3})^{2}+(y-y_{3})^{2}+\bar{{z}}_{i}^{2} }\nonumber \\&\times \left[ {\begin{array}{l} \left( {x(y_{1} -y_{3} )+y(x_{3} -x_{1} )+ (x_{1} y_{3} -x_{3} y_{1} )} \right) ^{2}\\ \quad +\left( {(x_{1} -x_{3} )^{2}+(y_{1} -y_{3} )^{2}} \right) \bar{{z}}_{i}^{2} \\ \end{array}} \right] , \nonumber \\ G_{6}^{i}= & {} \sqrt{(x-x_{3})^{2}+(y-y_{3})^{2}+\bar{{z}}_{i}^{2}}\nonumber \\&\times \left[ {\begin{array}{l} \left( {x(y_{3} -y_{2} )+y(x_{2} -x_{3} ) +(x_{3} y_{2} -x_{2} y_{3} )} \right) ^{2}\\ \quad +\left( {(x_{2} -x_{3} )^{2}+(y_{2} -y_{3} )^{2}} \right) \bar{{z}}_{i}^{2} \\ \end{array}} \right] . \end{aligned}$$
(33)

We point out that by replacing \(\bar{{z}}_{i}\) in \(M_{fk}^{i}\) by \(z_{ij} (i,j=1,2,3\)), one obtains the expressions for \(M_{hk}^{ij}\) where the subscript h denotes the parameters of the half-space. We further point out that the parameters \(\bar{{z}}_{i}\) and \(z_{ij}\) are defined in Eq. (4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhao, M., Pan, E. et al. Analysis of a nonlinear crack in a piezoelectric half-space via displacement discontinuity method. Int J Fract 194, 107–122 (2015). https://doi.org/10.1007/s10704-015-0040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0040-3

Keywords

Navigation