Skip to main content
Log in

Validity of linear elasticity in the crack-tip region of ideal brittle solids

  • Brief Note
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

It is a well known that, according to classical elasticity, the stress in the crack-tip region is singular, which has led to a debate over the validity of linear elasticity in this region. In this work, comparisons of finite and small strain theories have been made in the crack-tip region of a brittle crystal to comment on the validity of linear elasticity in the crack tip region. We find that linear elasticity is capable of accurately defining the state of stress very close (\(\sim \)1 nm) to a static crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  • Bernstein N, Hess DW (2003) Lattice trapping barriers to brittle fracture. Phys Rev Lett 91:25501–25504

    Article  Google Scholar 

  • Broberg KB (1971) Crack-growth criteria and non-linear fracture mechanics. J Mech Phys Solids 19(6):407–418

    Article  Google Scholar 

  • Buehler M, van Duin A, Goddard W (2006) Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett 96:95505

  • Buehler M (2008) Atomistic modeling of materials failure. Springer, Boston

    Book  Google Scholar 

  • Chaudhuri RA (2014) Three-dimensional mixed mode I+II+III singular stress field at the front of a (111) [112] \(\times \) [110] crack weakening a diamond cubic mono-crystalline plate with crack turning and step/ridge formation. Int J Fract 187:15–49. doi:10.1007/s10704-013-9891-7

  • Cherepanov GP (1967) Crack propagation in continuous media. J Appl Math Mech 31(3):503–512

    Article  Google Scholar 

  • Cramer T, Wanner A, Gumbsch P (2000) Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. Phys Rev Lett 85(4):788–791

    Article  Google Scholar 

  • Csányi G, Winfield S, Kermode JR, De Vita A, Comisso A, Bernstein N, Payne MC (2007) Expressive programming for computational physics in Fortran 95+. IoP Computational Physics Newsletter. p 27

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerberich WW, Oriani RA, Lji MJ, Chen X, Foecke T (1991) The necessity of both plasticity and brittleness in the fracture thresholds of iron. Philos Mag A 63(2):363–376

    Article  Google Scholar 

  • Geubelle PH, Knauss WG (1994) Finite strains at the tip of a crack in a sheet of hyperelastic material: I. Homogeneous case. J Elast 35:61–98

    Article  Google Scholar 

  • Gleizer A, Peralta G, Kermode JR, De Vita A, Sherman D (2014) Dissociative chemisorption of O\(_{2}\) inducing stress corrosion cracking in silicon crystals. Phys Rev Lett 112:115501

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10(4):507–523

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Article  Google Scholar 

  • Holland D, Marder M (1998) Ideal brittle fracture of silicon studied with molecular dynamics. Phys Rev Lett 80(4):746– 749

  • Irwin GR (1948) Fracturing of metals. Trans Am Soc Met 40:147

    Google Scholar 

  • Kermode JR, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne MC, Csanyi G, De Vita A (2008) Low-speed fracture instabilities in a brittle crystal. Nature 455(7217):1224–1227

    Article  Google Scholar 

  • Kermode JR, Ben-Bashat L, Atrash F, Cilliers JJ, Sherman D, De Vita A (2013) Macroscopic scattering of cracks initiated at single impurity atoms. Nat Commun 4:2441–2448

    Google Scholar 

  • Knauss WG (1966) Stresses in an infinite strip containing a semi-infinite crack. J Appl Mech 33(2):356–362

    Article  Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Love AEH (1920) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Mal AK, Singh SJ (1991) Deformation of elastic solids. Prentice Hall, New Jersey

    Google Scholar 

  • Maranganti R, Sharma P (2007) Length scales at which classical elasticity breaks down for various materials. Phys Rev Lett 98:195504

  • Marder MP, Liu X (1993) Instability in lattice fracture. Phys Rev Lett 71:2417

  • Marder MP (2004) Effects of atoms on brittle fracture. Int J Fract 130(2):517–555

    Article  Google Scholar 

  • Moras G, Choudhury R, Kermode JR, Csányi G, Payne MC, De Vita A (2010) Hybrid quantum/classical modeling of material systems: the “Learn on the Fly” molecular dynamics scheme. In: Dumitrica T (ed) Trends in computational nanomechanics transcending length and time scales. Springer, Berlin, pp 1–23

  • Nair AK, Warner DH, Hennig RG, Curtin WA (2010) Coupling quantum and continuum scales to predict crack tip dislocation nucleation. Scr Mater 63:1212

  • Rhee YW, Kim HW, Deng Y, Lawn BR (2001) Brittle fracture versus quasi plasticity in ceramics: a simple predictive index. J Am Ceram Soc 84(3):561–565

    Article  Google Scholar 

  • Rivlin RS, Thomas AG (1953) Rupture of rubber. I. Characteristicenergy for tearing. J Polym Sci 10(3):291–318

    Article  Google Scholar 

  • Slepyan LI (2002) Models and phenomena in fracture mechanics. Springer, Berlin

    Book  Google Scholar 

  • Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262

    Article  Google Scholar 

  • Swadener JG, Baskes MI, Nastasi M (2002) Molecular dynamics simulation of brittle fracture in silicon. Phys Rev Lett 89(8):85503–85504

    Article  Google Scholar 

  • Tadmor EB, Phillips R, Ortiz M (1996) Mixed atomistic and continuum models of deformation in solids. Langmuir 12:4529–4534

    Article  Google Scholar 

  • Thomson R, Hsieh C, Rana V (1971) Lattice trapping of fracture cracks. J Appl Phys 42(8):3154–3160

    Article  Google Scholar 

  • Wong FS, Shield RT (1969) Large plane deformations of thin elastic sheets of neo-hookean material. Zeitschrift f\({\ddot{u}}\)r Angewandte Math Phys (ZAMP) 20(2):176199

  • Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ (2005) Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett 94(12):125510–125513

  • Zimmerman JA, Webb EB, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Model Simul Mater Sci Eng 12:S319–S332

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Rio Tinto Centre for Advanced Mineral Recovery based at Imperial College, London, and useful discussions with Gert van Hout throughout the project. J.R.K and A.D.V. acknowledge funding from the EPSRC HEmS Grant EP/L014742/1 and from the European Commission ADGLASS FP7 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Singh.

Appendix

Appendix

The elasticity tensor \(c_{ijkl}\) linearly relates the stress tensor \(\sigma _{ij}\) to the strain tensor \(\epsilon _{ij}\) as \(\sigma _{ij} = c_{ijkl} \epsilon _{ij}\). Symmetries of \(\mathbf {c}\) and \(\epsilon \), and the requirement for the strain energy to be positive definite, reduce the fourth order tensor \(c_{ijkl}\) to a \(6\times 6\) matrix \(C_{ij}\). For cubic cystal symmetry \(C_{ij}\) has three independent elements and takes the form

$$\begin{aligned} \left( \begin{array}{cccccc} C_{11} &{} C_{12} &{} C_{12} &{} 0 &{} 0 &{} 0\\ C_{12} &{} C_{11} &{} C_{12} &{} 0 &{} 0 &{} 0\\ C_{12} &{} C_{12} &{} C_{11} &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} C_{44} &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} C_{44} &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} C_{44}\end{array} \right) \end{aligned}$$

where \(C_{11}=\) 151.35 GPa, \(C_{12}=\) 76.409 GPa and \(C_{44}=\) 56.422 GPa in the atomic crystal frame of reference (Kermode et al. 2008). This elasticity tensor has to be rotated from the crystal frame to the sample frame (\(x=[11\bar{2}]\), \(y=[111]\), \(z=[1\bar{1}0]\)), corresponding to cleavage along the lowest energy \((111)\) cleavage plane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Kermode, J.R., De Vita, A. et al. Validity of linear elasticity in the crack-tip region of ideal brittle solids. Int J Fract 189, 103–110 (2014). https://doi.org/10.1007/s10704-014-9958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-014-9958-0

Keywords

Navigation