Skip to main content
Log in

A modal characterization of alternating approximate bisimilarity

  • Published:
Formal Methods in System Design Aims and scope Submit manuscript

Abstract

Recently, alternating transition systems are adopted to describe control systems with disturbances and their finite abstract systems. In order to capture the equivalence relation between these systems, a notion of alternating approximate bisimilarity is introduced. This paper aims to establish a modal characterization for alternating approximate bisimilarity. Based on this result, we provide a link between specifications satisfied by the samples of control systems with disturbances and their finite abstractions. Moreover, a simple example is given to illustrate the application of such link in the design of controller of control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. By Definition 1, it is easy to see that both \(Q_{1}\cap Q'_{1}\) and \(Q_{2}\cap Q'_{2}\) are singleton. Therefore, \((Q_{1}\cap Q'_{1})\times(Q_{2}\cap Q'_{2})\) is single.

  2. \(\sigma_{1}\sim^{\varepsilon}_{\mathit{Ag}}\sigma_{2}\) if and only if for any \(i\in\mathbb{N}\), \(\sigma_{1}[i]\sim^{\varepsilon}_{\mathit{Ag}}\sigma _{2}[i]\). Similarly, \(s_{1}\sim^{\varepsilon}_{\mathit{Ag}} s_{2}\) if and only if \(s_{1}[i]\sim^{\varepsilon}_{\mathit{Ag}} s_{2}[i]\) for any i≤max{|s 1|,|s 2|}.

  3. iI φ i and ⋀ iI φ i can be defined as usual, where I is a finite index set.

  4. In some situation, we can just observe the sampling system rather than control system with disturbances. Then, it may be reasonable to require that the sample satisfies specifications under such controller.

  5. As usual, ||y||=max{y1,y2} for y=(y1 y2)′.

References

  1. Aczel P, Mendler N (1989) A final coalgebra theorem. In: Proceedings of the category theory and computer science. Springer, Berlin, pp 357–365

    Chapter  Google Scholar 

  2. Alur R, Henzinger T, Kupferman O, Vardi M (1998) Alternating refinement relations. In: Proceedings of the international conference on concurrency theory (CONCUR). Springer, Berlin, pp 165–178

    Google Scholar 

  3. Alur R, Henzinger T, Lafferriere G, Pappas G (2000) Discrete abstractions of hybrid systems. Proc IEEE 88(7):971–984

    Article  Google Scholar 

  4. Alur R, Henzinger T, Kupferman O (2002) Alternating-time temporal logic. J ACM 49(5):672–713

    Article  MathSciNet  Google Scholar 

  5. Borri APG, Di Benedetto M (2012) Symbolic models for nonlinear control systems affected by disturbances. Int J Control 85(10):1422–1432

    Article  MATH  Google Scholar 

  6. Breugel F van (2005) A behavioural pseudometric for metric labelled transition systems. In: Proceedings of the international conference on concurrency theory (CONCUR). Springer, Berlin, pp 141–155

    Google Scholar 

  7. Breugel F van, Worrell J (2005) A behavioural pseudometric for probabilistic transition systems. Theor Comput Sci 331(1):115–142

    Article  MATH  Google Scholar 

  8. Breugel F van, Sharma B, Worrell J (2008) Approximating a behavioural pseudometric without discount for probabilistic systems. Log Methods Comput Sci 4(2:2):1–23

    Google Scholar 

  9. Cámara J, Girard A, Gössler G (2011) Synthesis of switching controllers using approximately bisimilar multiscale abstractions. In: Proceedings of the 14th international conference on hybrid systems: computation and control. ACM, New York, pp 191–200

    Google Scholar 

  10. De Alfaro L, Faella M, Stoelinga M (2009) Linear and branching system metrics. IEEE Trans Softw Eng 35(2):258–273

    Article  Google Scholar 

  11. Desharnais J (1999) Labelled Markov processes. Ph.D. thesis, McGill University

  12. Desharnais J, Gupta V, Jagadeesan R, Panangaden P (2004) Metrics for labelled Markov processes. Theor Comput Sci 318(3):323–354

    Article  MATH  MathSciNet  Google Scholar 

  13. Giacalone A, Jou CSS (1990) Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of the IFIPWG 2.2/2.3 working conf. on programming concepts and methods, Sea of Gallilee. North-Holland, Amsterdam, pp 443–458

    Google Scholar 

  14. Girard A (2005) Reachability of uncertain linear systems using zonotopes. In: Hybrid systems: computation and control. Springer, Berlin, pp 291–305

    Chapter  Google Scholar 

  15. Girard A (2007) Approximately bisimilar finite abstractions of stable linear systems. In: Proceedings of the hybrid systems: computation and control. IEEE Press, New York, pp 231–244

    Chapter  Google Scholar 

  16. Girard A, Metrics for approximate transition systems simulation and equivalence (MATSSE). http://ljk.imag.fr/membres/Antoine.Girard/Software/Matisse/index.html

  17. Girard A, Pappas G (2007) Approximation metrics for discrete and continuous systems. IEEE Trans Autom Control 52(5):782–798

    Article  MathSciNet  Google Scholar 

  18. Girard A, Pappas G (2009) Hierarchical control system design using approximate simulation. Automatica 45(2):566–571

    Article  MATH  MathSciNet  Google Scholar 

  19. Girard A, Pappas G (2011) Approximate bisimulation: a bridge between computer science and control theory. Eur J Control 17(5):568–578

    Article  MATH  MathSciNet  Google Scholar 

  20. Hennessy M, Milner R (1985) Algebraic laws for nondeterminism and concurrency. J ACM 32(1):137–161

    Article  MATH  MathSciNet  Google Scholar 

  21. Kloetzer M, Belta C (2008) Dealing with nondeterminism in symbolic control. In: Proceedings of the hybrid systems: computation and control. Springer, Berlin, pp 287–300

    Chapter  Google Scholar 

  22. König D (1936) Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie der Strekenkomplexe

    Google Scholar 

  23. Larsen K, Yi W (1994) Time abstracted bisimulation: implicit specifications and decidability. In: Proceeding of the mathematical foundations of programming semantics. Springer, Berlin, pp 160–176

    Chapter  Google Scholar 

  24. Park D (1981) Concurrency and automata on infinite sequences. In: Proceedings of the 5th GI-conference on theoretical computer science. Springer, Berlin, pp 167–183

    Chapter  Google Scholar 

  25. Pola G, Tabuada P (2008) Symbolic models for nonlinear control systems affected by disturbances. In: Proceedings of the 47th IEEE conference on decision and control. IEEE Press, New York, pp 251–256

    Google Scholar 

  26. Pola G, Tabuada P (2009) Symbolic models for nonlinear control systems: alternating approximate bisimulations. SIAM J Control Optim 48:719–733

    Article  MATH  MathSciNet  Google Scholar 

  27. Pola G, Girard A, Tabuada P (2008) Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10):2508–2516

    Article  MATH  MathSciNet  Google Scholar 

  28. Tabuada P (2008) An approximate simulation approach to symbolic control. IEEE Trans Autom Control 53(6):1406–1418

    Article  MathSciNet  Google Scholar 

  29. Tabuada P, Pappas G (2003) Finite bisimulations of controllable linear systems. In: Proceedings of the 42nd IEEE conference on decision and control, 2003, vol 1. IEEE Press, New York, pp 634–639

    Google Scholar 

  30. Tabuada P, Pappas G (2003) From discrete specifications to hybrid control. In: Proceedings of the 42nd IEEE conference on decision and control, 2003, vol 4. IEEE Press, New York, pp 3366–3371

    Google Scholar 

  31. Tabuada P, Pappas G (2006) Linear time logic control of discrete-time linear systems. IEEE Trans Autom Control 51(12):1862–1877

    Article  MathSciNet  Google Scholar 

  32. Wang Y (1990) Real-time behaviour of asynchronous agents. In: Proceedings of the international conference on concurrency theory (CONCUR). Springer, Berlin, pp 502–520

    Google Scholar 

  33. Ying M (2002) Bisimulation indexes and their applications. Theor Comput Sci 275(1–2):1–68

    Article  MATH  Google Scholar 

  34. Ying M (2005) π-Calculus with noisy channels. Acta Inform 41(9):525–593

    Article  MATH  MathSciNet  Google Scholar 

  35. Ying M, Feng Y, Duan R, Ji Z (2009) An algebra of quantum processes. ACM Trans Comput Log 10(3):1–36

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhang J, Zhu Z (2007) A modal characterization of λ-bisimilarity. Int J Softw Inform 1(1):85–99

    Google Scholar 

  37. Zhang J, Zhu Z (2008) A behavioural pseudometric based on λ-bisimilarity. Electron Notes Theor Comput Sci 220(3):115–127

    Article  Google Scholar 

  38. Zhang J, Zhu Z (2008) Characterize branching distance in terms of (η,α)-bisimilarity. Inf Comput 206(8):953–965

    Article  MATH  Google Scholar 

  39. Zhou C, Ying M (2012) Approximating Markov processes through filtration. Theor Comput Sci 446:75–97

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable suggestions, which have helped us to improve the presentation of the paper. In particular, the approach of linear temporal logical control is perfected with the help of the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Zhu.

Additional information

This work received financial support of the National Natural Science of China (No. 60973045), Fok Ying-Tung Education Foundation, the NSF of Jiangsu Province (No. BK2012473), the PAPD of Jiangsu Higher Education Institutions (No. YSXKKT27), and the NSF of the Jiangsu Higher Education Institutions (No. 13KJB520012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhu, Z. A modal characterization of alternating approximate bisimilarity. Form Methods Syst Des 44, 240–263 (2014). https://doi.org/10.1007/s10703-013-0201-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10703-013-0201-9

Keywords

Navigation