Skip to main content
Log in

Galilean and Lorentz Transformations in a Space with Generalized Uncertainty Principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider a space with Generalized Uncertainty Principle (GUP) which can be obtained in the frame of the deformed commutation relations. In the space with GUP we have found transformations relating coordinates and times of moving and rest frames of reference in the first order over the parameter of deformation. In the non-relativistic case we find the deformed Galilean transformation which is rotation in Euclidian space–time. This transformation is similar to the Lorentz one but written for Euclidean space–time where the speed of light is replaced by some velocity related to the parameter of deformation. We show that for relativistic particle in the space with GUP the coordinates of the rest and moving frames of reference satisfy the Lorentz transformation with some effective speed of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407–454 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  2. Maggiore, M.: A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993)

    Article  ADS  Google Scholar 

  3. Witten, E.: Reflections on the fate of spacetime. Phys. Today 49, 24–31 (1996)

    Article  MathSciNet  Google Scholar 

  4. Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living. Rev. Relativ. 16(2), 1–90 (2013)

    ADS  MATH  Google Scholar 

  5. Hossenfelder, S.: Can we measure structures to a precision better than the Planck length? Class. Quant. Gravity 29, 115011 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kempf, A.: Noncommutative geometric regularization. Phys. Rev. D 54, 5174–5178 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Snyder, H.S.: Quantized space–time. Phys. Rev. 71, 38–41 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Quesne, C., Tkachuk, V.M.: Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework. J. Phys. A 36, 10373–10389 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Quesne, C., Tkachuk, V.M.: More on a SUSYQM approach to the harmonic oscillator with nonzero minimal uncertainties in position and/or momentum. J. Phys. A 37, 10095–10113 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dadić, I., Jonke, L., Meljanac, S.: Harmonic oscillator with minimal length uncertainty relations and ladder operators. Phys. Rev. D 67, 087701 (2003)

    Article  ADS  Google Scholar 

  13. Quesne, C., Tkachuk, V.M.: Dirac oscillator with nonzero minimal uncertainty in position. J. Phys. A 38, 1747–1765 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Menculini, L., Panella, O., Roy, P.: Quantum phase transitions of the Dirac oscillator in a minimal length scenario. Phys. Rev. D 91, 045032 (2015)

    Article  ADS  Google Scholar 

  15. Quesne, C., Tkachuk, V.M.: Lorentz-covariant deformed algebra with minimal length and application to the (1 + 1)-dimensional Dirac oscillator. J. Phys. A 39, 10909–10922 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fityo, T.V., Vakarchuk, I.O., Tkachuk, V.M.: One-dimensional Coulomb-like problem in deformed space with minimal length. J. Phys. A 39, 2143–2149 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bouaziz, D., Bawin, M.: Regularization of the singular inverse square potential in quantum mechanics with a minimal length. Phys. Rev. A 76, 032112 (2007)

    Article  ADS  Google Scholar 

  18. Bouaziz, D., Bawin, M.: Singular inverse square potential in arbitrary dimensions with a minimal length: application to the motion of a dipole in a cosmic string background. Phys. Rev. A 78, 032110 (2008)

    Article  ADS  Google Scholar 

  19. Menculini, L., Panella, O., Roy, P.: Exact solutions of the (2+1) dimensional Dirac equation in a constant magnetic field in the presence of a minimal length. Phys. Rev. D 87, 065017 (2013)

    Article  ADS  Google Scholar 

  20. Pedram, P., Amirfakhrian, M., Shababi, H.: On the (2 + 1)-dimensional Dirac equation in a constant magnetic field with a minimal length uncertainty. Int. J. Mod. Phys. D 24, 1550016 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Brau, F.: Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691–7696 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Benczik, S., Chang, L.N., Minic, D., Takeuchi, T.: Hydrogen-atom spectrum under a minimal-length hypothesis. Phys. Rev. A 72, 012104 (2005)

    Article  ADS  Google Scholar 

  23. Stetsko, M.M., Tkachuk, V.M.: Perturbation hydrogen-atom spectrum in deformed space with minimal length. Phys. Rev. A 74, 012101 (2006)

    Article  ADS  Google Scholar 

  24. Stetsko, M.M.: Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. Phys. Rev. A 74, 062105 (2006) [Erratum: Phys. Rev. A 78, 029907(E) (2008)]

  25. Stetsko, M.M., Tkachuk, V.M.: Orbital magnetic moment of the electron in the hydrogen atom in a deformed space with minimal length. Phys. Lett. A 372, 5126–5130 (2008)

    Article  ADS  MATH  Google Scholar 

  26. Stetsko, M.M., Tkachuk, V.M.: Scattering problem in deformed space with minimal length. Phys. Rev. A 76, 012707 (2007)

    Article  ADS  Google Scholar 

  27. Brau, F., Buisseret, F.: Minimal length uncertainty relation and gravitational quantum well. Phys. Rev. D 74, 036002 (2006)

    Article  ADS  Google Scholar 

  28. Nozari, K., Pedram, P.: Minimal length and bouncing-particle spectrum. Europhys. Lett. 92, 50013 (2010)

    Article  ADS  Google Scholar 

  29. Pedram, P., Nozari, K., Taheri, S.H.: The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field. J. High Energy Phys. 1103, 093 (2011)

    Article  ADS  MATH  Google Scholar 

  30. Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  31. Ali, A.F., Das, S., Vagenas, E.C.: Proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  32. Frassino, A.M., Panella, O.: Casimir effect in minimal length theories based on a generalized uncertainty principle. Phys. Rev. D 85, 045030 (2012)

    Article  ADS  Google Scholar 

  33. Falek, M., Merad, M., Moumni, M.: Klein paradox for the bosonic equation in the presence of minimal length. Found. Phys. 45, 507–524 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Vakili, B.: Dilaton cosmology, noncommutativity, and generalized uncertainty principle. Phys. Rev. D 77, 044023 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. Battisti, M.V., Meljanac, S.: Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry. Phys. Rev. D 79, 067505 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kober, M.: Gauge theories under incorporation of a generalized uncertainty principle. Phys. Rev. D 82, 085017 (2010)

    Article  ADS  Google Scholar 

  37. Bojowald, M., Kempf, A.: Generalized uncertainty principles and localization of a particle in discrete space. Phys. Rev. D 86, 085017 (2012)

    Article  ADS  Google Scholar 

  38. Sailer, K., Péli, Z., Nagy, S.: Some consequences of the generalized uncertainty principle induced ultraviolet wave-vector cutoff in one-dimensional quantum mechanics. Phys. Rev. D 87, 084056 (2013)

    Article  ADS  Google Scholar 

  39. Benczik, S., Chang, L.N., Minic, D., Okamura, N., Rayyan, S., Takeuchi, T.: Short distance versus long distance physics: the classical limit of the minimal length uncertainty relation. Phys. Rev. D 66, 026003 (2002)

    Article  ADS  Google Scholar 

  40. Frydryszak, A.M., Tkachuk, V.M.: Aspects of pre-quantum description of deformed theories. Czechoslov. J. Phys. 53, 1035–1040 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  41. Silagadze, Z.K.: Quantum gravity, minimum length and Keplerian orbits. Phys. Lett. A 373, 2643–2645 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Quesne, C., Tkachuk, V.M.: Composite system in deformed space with minimal length. Phys. Rev. A 81, 012106 (2010)

    Article  ADS  Google Scholar 

  43. Buisseret, F.: Quantum N-body problem with a minimal length. Phys. Rev. A 82, 062102 (2010)

    Article  ADS  Google Scholar 

  44. Marin, F., Marino, F., Bonaldi, M., et al.: Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 9, 71–73 (2013)

    Article  Google Scholar 

  45. Pikovski, I., Vanner, M.R., Aspelmeyer, M., et al.: Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393–397 (2012)

    Article  Google Scholar 

  46. Ali, A.F.: Minimal length in quantum gravity, equivalence principle and holographic entropy bound class. Quant. Gravity 28, 065013 (2011)

    Article  ADS  MATH  Google Scholar 

  47. Tkachuk, V.M.: Deformed Heisenberg algebra with minimal length and the equivalence principle. Phys. Rev. A 86, 062112 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  48. Ehlers, J., Lämmerzahl, C. (eds): Special Relativity. Lecture of Notes in Physics, vol. 702. Springer, Berlin (2006)

  49. Gnatenko, Kh.P.: Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061–3066 (2013)

  50. Gnatenko, Kh.P., Tkachuk, V.M.: Effect of coordinate noncommutativity on the mass of a particle in a uniform field and the equivalence principle. Mod. Phys. Lett. A 31, 1650026 (2016)

Download references

Acknowledgments

I am grateful to Dr. T. Masłowski for drawing my attention to review [48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Tkachuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachuk, V.M. Galilean and Lorentz Transformations in a Space with Generalized Uncertainty Principle. Found Phys 46, 1666–1679 (2016). https://doi.org/10.1007/s10701-016-0036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0036-5

Keywords

Navigation