Skip to main content
Log in

Bell Correlated and EPR States in the Framework of Jordan Algebras

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We study Bell inequalities and EPR states in the context of Jordan algebras. We show that the set of states violating Bell inequalities across two operator commuting nonmodular Jordan Banach algebras is norm dense in the global state space. It generalizes hitherto known results in quantum field theory in several directions. We propose new Jordan quantity for incommensurable observables in a given state, introduce the concept of EPR state for Jordan structures, and study relationship between EPR states and Bell correlated states. Our analysis shows crucial role of spin factors and Pauli spin matrices for studying noncommutative properties of states and observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arens, R., Varadarajan, V.S.: On the concept of Einstein–Podolsky–Rosen states and their structure. J. Math. Phys. 41, 638–651 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bell, J.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  3. Bohata, M., Hamhalter, J.: Maximal violation of Bells inequalities and Pauli spin matrices. J. Math. Phys. 50, 082101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bohata, M., Hamhalter, J.: Bells correlations and spin systems. Found. Phys. 40, 1065–1075 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bohm, D.: Quantum Theory. PrenticeHall, Englewood Cliffs, NJ (1951)

    Google Scholar 

  6. Chu, C.-H.: Jordan Structures in Geometry and Analysis. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  8. Emch, G.G.: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley, New York (1972)

    MATH  Google Scholar 

  9. Emch, G.G.: Mathematical and Conceptual Foundations of 20th-Century Physics. North-Holland Publishing Co., Amsterdam (1984)

    MATH  Google Scholar 

  10. Halvorson, H., Clifton, R.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hamhalter, J.: Quantum Measure Theory. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  12. Hanche-Olsen, H., Størmer, E.: Jordan Operator Algebras. Pitman, Boston (1984)

    MATH  Google Scholar 

  13. Landsmann, N.P.: Mathematical Topics between Classical and Quantum Mechanics. Springer, New York (1998)

    Book  Google Scholar 

  14. Kitajima, Y.: EPR states and bell correlated states in algebraic quantum field theory. Found. Phys. 43, 1182–1192 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Summers, S.J.: Bell’s inequalities and algebraic structure. In: Doplicher, S., Longo, R., Roberts, J.E., Zsido, L. (eds.) Operator Algebras and Quantum Field Theory, pp. 633–646. International Press, Boston (1997)

    Google Scholar 

  17. Summers, S.J., Werner, R.F.: Bells inequalities and quantum field theory I. General setting. J. Math. Phys. 28, 2440–2447 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Summers, S.J., Werner, R.F.: Bell’s inequalities and quantum field theory. II. Bell’s inequalities are maximally violated in the vacuum. J. Math. Phys. 28, 2448–2456 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Summers, S.J., Werner, R.F.: Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110, 247–259 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Summers, S.J., Werner, R.F.: Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. Henri Poincaré 49, 215–243 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Topping, D.M.: Jordan Algebras of self-adjoint operators. Mem. Am. Math. Soc. 53, 1–48 (1965)

    MathSciNet  Google Scholar 

  22. Werner, R.F.: EPR states for von Neumann algebras. arXiv:quant-ph/9910077 (1999)

Download references

Acknowledgments

This work was supported by the “Grant Agency of the Czech Republic”, Grant No. P201/12/0290 “Topological and geometrical properties of Banach spaces and operator algebras”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Sobotíková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamhalter, J., Sobotíková, V. Bell Correlated and EPR States in the Framework of Jordan Algebras. Found Phys 46, 330–349 (2016). https://doi.org/10.1007/s10701-015-9966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9966-6

Keywords

Navigation