Skip to main content
Log in

Unifying Geometrical Representations of Gauge Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We unify three approaches within the vast body of gauge-theory research that have independently developed distinct representations of a geometrical surface-like structure underlying the vector-potential. The three approaches that we unify are: those who use the compactified dimensions of Kaluza–Klein theory, those who use Grassmannian models (also called gauge theory embedding or \(CP^{N-1}\) models) to represent gauge fields, and those who use a hidden spatial metric to replace the gauge fields. In this paper we identify a correspondence between the geometrical representations of the three schools. Each school was mostly independently developed, does not compete with other schools, and attempts to isolate the gauge-invariant geometrical surface-like structures that are responsible for the resulting physics. By providing a mapping between geometrical representations, we hope physicists can now isolate representation-dependent physics from gauge-invariant physical results and share results between each school. We provide visual examples of the geometrical relationships between each school for \(U(1)\) electric and magnetic fields. We highlight a first new result: in all three representations a static electric field (electric field from a fixed ring of charge or a sphere of charge) has a hidden gauge-invariant time dependent surface that is underlying the vector potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We have chosen to work in units where \(\hbar = c = 1\) and where we absorb the electron’s charge \(e\) into the definition of \(A_\mu \).

  2. Throughout this paper we use the convention that lower-case Latin letters near the beginning of the alphabet \(a,b,\ldots \) will be gauge-theory color indices, Greek letters \(\mu , \nu ,\ldots \) will be space-time coordinates, upper-case Latin letters \(A,B,\ldots \) will be used for Kaluza–Klein metric indices, and lower-case Latin letters towards the middle of the alphabet \(i,j,\ldots \) will be used for the variables corresponding to subspaces of space-time and the embedding dimensions, where context will keep them distinct. The Kaluza–Klein index values 0 through 3 are the usual space-time coordinates \(t,x,y,z\) and the index value 5 is the fifth dimension coordinate \(x^5\), which is used to parameterize the tiny compact dimension. The appendix provides a summary.

  3. Some specific many-to-one mappings will be provided in Sect. 5 in Eqs. (39) and (40).

  4. The distinction between lower and upper indices are dropped in the epsilon term for convenience (see Weinberg [50, Chap. 15, Appendix]).

  5. We have reused the variable name \(X\) to parametrize each immersion. This is not not same immersion as Eq. (12) nor the same as in the other examples.

  6. We have reused the variable name X to parametrize each immersion. This is not not same immersion as Eq. (12) nor the same as in the other examples.

  7. We have reused the variable name X to parametrize each immersion. This is not not same immersion as Eq. (12) nor the same as in the other examples.

  8. We have reused the variable name X to parametrize each immersion. This is not not same immersion as Eq. (12) nor the same as in the other examples.

  9. We have reused the variable name X to parametrize each immersion. This is not not same immersion as Eq. (12) nor the same as in the other examples.

  10. The authors would like to thank Ricardo Schiappa for highlighting these research directions.

References

  1. Alekseevsky, D.V., Cortes, V., Devchand, C.: Yang–Mills connections over manifolds with Grassmann structure. J. Math. Phys. 44, 6047–6076 (2003). doi:10.1063/1.1622999

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M., Hitchin, N., Drinfeld, V., Manin, Y.: Construction of instantons. Phys. Lett. A 65(3), 185–187 (1978). doi:10.1016/0375-9601(78)90141-X

  3. Atiyah, M.F.: Geometry of Yang–Mills Fields (Lezioni Fermiane). Sc. Norm. Sup, Pisa (1979)

  4. Balakrishna, B., Mahanthappa, K.: Composite gauge field models with broken symmetries. Phys. Rev. D 49, 2653–2657 (1994). doi:10.1103/PhysRevD.49.R2653

    Article  ADS  Google Scholar 

  5. Bars, I.: Quantized electric flux tubes in quantum chromodynamics. Phys. Rev. Lett. 40, 688–691 (1978)

    Article  ADS  Google Scholar 

  6. Bars, I., Green, F.: Gauge invariant quantum variables in QCD. Nucl. Phys. B148, 445–460 (1979)

    Article  ADS  Google Scholar 

  7. Cahill, K.: Physical Mathematics. Cambridge University Press, Cambridge (2013). http://books.google.com/books?id=13YeX-SXkWYC. Accessed 1 Apr 2014

  8. Cahill, K.: Some nonrenormalizable theories are finite. Phys. Rev. D 88, 125014 (2013). doi:10.1103/PhysRevD.88.125014

    Article  ADS  Google Scholar 

  9. Cahill, K.E.: The Fourth root of gravity (1993). http://arxiv.org/abs/gr-qc/9304014

  10. Cahill, K.E., Herling, G.: Better actions. Nucl. Phys. Proc. Suppl. 53, 797–800 (1997). doi:10.1016/S0920-5632(96)00785-2

    Article  ADS  Google Scholar 

  11. Cahill, K.E., Raghavan, S.: Geometrical representations of gauge fields. J. Phys. A26, 7213–7217 (1993). doi:10.1088/0305-4470/26/23/054

    ADS  Google Scholar 

  12. Cho, J.H., Oh, P., Park, J.H.: Solitons in a grassmannian \(\sigma \) model coupled to a Chern–Simons term. Phys. Rev. D 66, 025022 (2002). doi: 10.1103/PhysRevD.66.025022

    Article  ADS  MathSciNet  Google Scholar 

  13. Corrigan, E.F., Fairlie, D.B., Templeton, S., Goddard, P.: A Green’s function for the general selfdual gauge field. Nucl. Phys. B140, 31 (1978)

    Article  ADS  Google Scholar 

  14. Din, A.M., Zakrzewski, W.J.: General classical solutions in the CP\(^{N-1}\) model. Nucl. Phys. B 174, 397–406 (1980). doi: 10.1016/0550-3213(80)90291-6

    Article  ADS  MathSciNet  Google Scholar 

  15. Dubois-Violette, M., Georgelin, Y.: Gauge theory in terms of projector valued fields. Phys. Lett. B82, 251 (1979)

    Article  ADS  Google Scholar 

  16. Eichenherr, H.: Invariant nonlinear sigma models. Nucl. Phys. B 146, 215–223 (1978). doi:10.1016/0550-3213(78)90439-X

    Article  ADS  Google Scholar 

  17. Felsager, B., Leinaas, J.: Geometric interpretation of magnetic fields and the motion of charged particles. Nucl. Phys. B 166, 162 (1980). doi:10.1016/0550-3213(80)90497-6

    Article  ADS  MathSciNet  Google Scholar 

  18. Feynman, R.: The Character of Physical Law. Modern Library, New York (1994). http://books.google.com/books?id=j-49AQAAIAAJ

  19. Freedman, D.Z., Haagensen, P.E., Johnson, K., Latorre, J.I.: The hidden spatial geometry of nonabelian gauge theories (1993). http://arxiv.org/abs/hep-th/9309045

  20. Freedman, D.Z., Khuri, R.R.: Spatial geometry and the Wu–Yang ambiguity. In: Strings and Symmetries. Springer, Berlin (1994)

  21. Gava, E., Jengo, R., Omero, C.: The O(5) nonlinear sigma model as a SU(2) gauge theory. Phys. Lett. B 81, 187 (1979). doi:10.1016/0370-2693(79)90520-3

    Article  ADS  Google Scholar 

  22. Gliozzi, F.: String-like topological excitations of the electromagnetic field. Nucl. Phys. B 141, 379–390 (1978). doi:10.1016/0550-3213(78)90033-0

    Article  ADS  MathSciNet  Google Scholar 

  23. Goldstone, J., Jackiw, R.: Unconstrained temporal gauge for Yang–Mills theory. Phys. Lett. B74, 81 (1978). doi:10.1016/0370-2693(78)90065-5

    Article  ADS  Google Scholar 

  24. Gron, O.: Classical kaluza klein description of the hydrogen atom. Il Nuovo Cimento 91B, 57–66 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gron, O.: Inertial dragging and Kaluza–Klein theory. Int. J. Mod. Phys. A20, 2270–2274 (2005). doi:10.1142/S0217751X05024481

    Article  ADS  MathSciNet  Google Scholar 

  26. Gron, O., Odegaard, P.: Kaluza Klein description of the electrical field due to an infinitely long, straight charged cylinder. Gen. Relat. Gravit. 26, 53–60 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Grundland, A.M., Strasburger, A., Zakrzewski, W.J.: Surfaces immersed in \(\backslash \)su\(\{\)N+1\(\}\) Lie algebras obtained from the \(CP^{N}\) sigma models. J. Phys. A Math. Gen. 39, 9187–9213 (2006). doi: 10.1088/0305-4470/39/29/013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Haagensen, P.E., Johnson, K.: Yang–Mills fields and Riemannian geometry. Nucl. Phys. B439, 597–616 (1995). doi:10.1016/0550-3213(94)00464-P

    Article  ADS  MathSciNet  Google Scholar 

  29. Haagensen, P.E., Johnson, K., Lam, C.: Gauge invariant geometric variables for Yang–Mills theory. Nucl. Phys. B477, 273–292 (1996). doi:10.1016/0550-3213(96)00362-8

    Article  ADS  MathSciNet  Google Scholar 

  30. Hussin, V., Yurduşen, I., Zakrzewski, W.J.: Canonical surfaces associated with projectors in Grassmannian sigma models. J. Math. Phys. 51(10), 103509 (2010). doi:10.1063/1.3486690

    Article  ADS  MathSciNet  Google Scholar 

  31. Kaluza, T.: Zum Unittsproblem in der Physik, pp. 966–972. Sitzungsber. Preuss. Akad. Wiss., Berlin (1921)

  32. Klein, O.: Quantentheorie und fnfdimensionale Relativittstheorie. Z. Phys. A 37, 895–906 (1926)

    Article  MATH  Google Scholar 

  33. Lunev, F.: Four-dimensional Yang–Mills theory in local gauge invariant variables. Mod. Phys. Lett. A9, 2281–2292 (1994). doi:10.1142/S0217732394002148

    Article  ADS  MathSciNet  Google Scholar 

  34. Marsh, D.: The Grassmannian sigma model in SU(2) Yang–Mills theory. J. Phys. A40, 9919–9928 (2007). doi:10.1088/1751-8113/40/32/015

    ADS  MathSciNet  Google Scholar 

  35. Narasimhan, M.S., Ramanan, S.: Existence of universal connections. Am. J. Math. 83(3), 563–572 (1961). http://www.jstor.org/stable/2372896. Accessed 1 Feb 2013

  36. Narasimhan, M.S., Ramanan, S.: Existence of universal connections II. Am. J. Math. 85, 223–231 (1961)

    Article  MathSciNet  Google Scholar 

  37. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  38. Niemi, A.J., Slizovskiy, S.: Four dimensional Yang–Mills theory, gauge invariant mass and fluctuating three branes. J. Phys. A43, 425402 (2010). doi:10.1088/1751-8113/43/42/425402

    ADS  MathSciNet  Google Scholar 

  39. Palumbo, F.: Composite gauge fields in renormalizable models. Phys. Rev. D48, 1917–1920 (1993). doi:10.1103/PhysRevD.48.R1917

    ADS  Google Scholar 

  40. Salam, A., Strathdee, J.: On Kaluza–Klein theory. Ann. Phys. 141, 316–352 (1982). doi:10.1016/0003-4916(82)90291-3

    Article  ADS  MathSciNet  Google Scholar 

  41. Schiappa, R.: Supersymmetric Yang–Mills theory and Riemannian geometry. Nucl. Phys. B517, 462–484 (1998). doi:10.1016/S0550-3213(98)00013-3

    Article  ADS  MathSciNet  Google Scholar 

  42. Schuster, P., Jaffe, R.: Quantum mechanics on manifolds embedded in Euclidean space. Ann. Phys. 307, 132–143 (2003). doi:10.1016/S0003-4916(03)00080-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Schwarz, A., Doughty, N.: Kaluza–Klein unification and the Fierz–Pauli weak field limit. Am. J. Phys. 60, 150–157 (1992). doi:10.1119/1.16935

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Serna, M., Cahill, K.E.: Riemannian gauge theory and charge quantization. JHEP 0310, 054 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. Serna, M., Strafaccia, J., Zeringue, C.: The geometric origin of electric force. J. Phys. Conf. Ser. 24, 219–224 (2005). doi:10.1088/1742-6596/24/1/025

    Article  ADS  Google Scholar 

  46. Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983). doi:10.1103/PhysRevLett.51.2167

  47. Stoll, D.: An angle representation of QCD (1994)

  48. Stoll, D.: The Hamiltonian formulation of QCD in terms of angle variables. Phys. Lett. B336, 524–528 (1994). doi:10.1016/0370-2693(94)90567-3

    Article  ADS  Google Scholar 

  49. Valtancoli, P.: Projectors for the fuzzy sphere. Mod. Phys. Lett. A16, 639–646 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  50. Weinberg, S.: The Quantum Theory of Fields: Modern Applications, Volume 1 in Quantum Theory of Fields. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  51. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984). doi:10.1103/PhysRevLett.52.2111

    Article  ADS  MathSciNet  Google Scholar 

  52. Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D12, 3845–3857 (1975). doi:10.1103/PhysRevD.12.3845

    ADS  Google Scholar 

  53. Zee, A.: Nonabelian gauge structure in nuclear quadrupole resonance. Phys. Rev. A 38, 1–6 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zee, A.: Quantum Field Theory in a Nutshell. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Laura Serna, Kevin Cahill, Richard Cook, Matt Robinson, Christian Wohlwend, Ricardo Schiappa, and Yang–Hui He for helpful comments after reviewing the manuscript. We would also like to thank the reviewers for helpful contributions increasing the quality of the final paper. The views expressed in this paper are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the US Government. Distribution A: Approved for public release. Distribution unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Serna.

Appendix: Variable Definitions Reference

Appendix: Variable Definitions Reference

\(\mathbf {e}_a\) or \(e_a^j\)

The basis vector for the Grassmannian school. The \(a\) coordinate is an internal ‘color’ index. If there is a Latin index like \(j\), it refers to the embedding space. Forms a rectangular matrix

\(\mathbf {t}_\mu \) or \(t_\mu ^j\)

Coordinate tangent vector for the coordinate \(x^\mu \). Used in defining a metric. If there is a Latin index like \(j\), it refers to the embedding-space dimension. Forms a rectangular matrix

\(u^a_j\)

The tetrad of the hidden-spatial-geometry school. Notice the \(a\) index specifies the ‘frame’ in color space and \(j\) is a ‘frame’ in a slice of space-time. This maps the color index \(a\) to the space-time coordinate tangent vector \(j\) of a spatial metric which represents the gauge field and corresponding electric and magnetic fields. Must be a square matrix

\(\mathbf {X}\) or \(X^j\)

Is the generic vector used to denote an explicit isometric embedding which will be used to induce a metric. The Latin index \(j\) refers to the embedding space

\(\phi ^a\)

Coefficients of the basis element \(\mathbf {e}_a\) which specify a vector in color-space. \(\phi ^a\) changes with a gauge transformation but the vector \( \mathbf {\phi } = \phi ^a \mathbf {e}_a = \phi '^{\,b} \mathbf {e}'_b\) is gauge invariant

\( a, b, c\)

Lower-case Latin letters near the beginning of the alphabet will be gauge-theory color indices

\(\mu , \nu ,\ldots \)

Greek letters will be space-time coordinates

\(A,B,\ldots \)

Upper-case Latin letters will be used for Kaluza–Klein metric indices. Kaluza–Klein index values 0 through 3 are the usual space-time coordinates \(t,x,y,z\) and the index value 5 is the fifth dimension coordinate \(x^5\), which is used to parameterize the tiny compact dimension

\(i,j,\ldots \)

Variables corresponding to subspaces of space-time and the embedding dimensions, where context will keep them distinct

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsid, S., Serna, M. Unifying Geometrical Representations of Gauge Theory. Found Phys 45, 75–103 (2015). https://doi.org/10.1007/s10701-014-9841-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9841-x

Keywords

Navigation