Skip to main content
Log in

The New Quantum Logic

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Laloë, F.: Do We Really Understand Quantum Mechanics?. Cambridge University Press, Cambridge, UK (2012)

    Book  Google Scholar 

  2. Griffiths, R.B.: A consistent quantum ontology. Stud. Hist. Phil. Mod. Phys. 44, 93–114 (2013). arXiv:1105.3932

    Article  MATH  Google Scholar 

  3. Schlosshauer, M.: Elegance and Enigma: The Quantum Interviews. Springer-Verlag, Berlin (2011)

    Book  Google Scholar 

  4. Mermin, N.D.: Annotated interview with a QBist in the making. (2013). arXiv:1301.6551

  5. Feynman, R.: The Character of Physical Law. MIT Press, Cambridge, MA (1965)

    Google Scholar 

  6. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  7. Putnam, H.: The logic of quantum mechanics. In: Mathematics, Matter, and Method, pp. 174–197. Cambridge University Press, Cambridge, UK (1975)

    Google Scholar 

  8. Maudlin, T.: The tale of quantum logic. In: Ben-Menahem, Y. (ed.) Hilary Putnam, pp. 156–187. Cambridge University Press, Cambridge, UK (2005)

  9. Bacciagaluppi, G.: Is Logic Empirical? In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 49–78. Elsevier, Amsterdam (2009). http://philsci-archive.pitt.edu/3380/

  10. Bell, J.S.: The theory of local beables. In: Speakable and Unspeakable in Quantum Mechanics, 2nd edn, pp. 52–62. Cambridge University Press, Cambridge (2004)

  11. Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Phil. Mod. Phys. 34, 135–142 (2003)

    Article  Google Scholar 

  12. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, volume III: Quantum Mechanics. Addison-Wesley, Reading, MA (1965)

    Google Scholar 

  13. Wheeler, J.A.: The “Past” and the “Delayed-Choice” double-slit experiment. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory, pp. 9–48. Academic Press, New York (1978)

    Chapter  Google Scholar 

  14. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)

    Article  ADS  Google Scholar 

  15. Bell, J. S.: On the einstein podolsky rosen paradox. Physics. 1,195–200, 1964. Reprinted in Bell, J. S. Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987), p. 14.

  16. Bell, J. S.: La nouvelle cuisine. In: Sarlemijn, A and Kross, P (eds.), Between Science and Technology, pp. 97–115. Elsevier, Amsterdam, (1990). Reprinted in Bell, J. S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed. (Cambridge University Press, 2004), pp 232–248.

  17. Hardy, L.: Quantum mechanics, local realistic theories and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem. Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)

    Google Scholar 

  19. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge, UK (2002). http://quantum.phys.cmu.edu/CQT/

  21. von Neumann, J:. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin, (1932). English translation: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton (1955).

  22. Everett III, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  23. DeWitt, B.S., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton, NJ (1973)

    Google Scholar 

  24. Pusey, M.F., Barrett, J and Rudolph, T.: On the reality of the quantum state. Nature Phys. 8, 476 (2012). arXiv:1111.3328.

  25. Colbeck, R., Renner, R.: Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012). arXiv:1111.6597

    Article  ADS  Google Scholar 

  26. Hardy, L.: Are quantum states real? Int. J. Mod. Phys. B 27, 1345012 (2013)

    Article  ADS  Google Scholar 

  27. Patra, M.K., Pironio, S., Massar, S.: No-go theorems for \(\psi \)-epistemic models based on a continuity assumption. Phys. Rev. Lett. 111, 090402 (2013)

    Article  ADS  Google Scholar 

  28. Griffiths, R.B.: Epistemic restrictions in Hilbert space quantum mechanics. Phys. Rev. A 88, 042122 (2013). arXiv:1308.4176

    Article  ADS  Google Scholar 

  29. Omnès, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton, NJ (1999)

    MATH  Google Scholar 

  30. Omnès, R.: Are there unsolved problems in the interpretation of quantum mechanics? In Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, pp. 169–194. Springer, Berlin, (1999).

  31. Gell-Mann, M., Hartle, J.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gell-Mann, M., Hartle, J.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007). quant-ph/0609190

    Article  ADS  Google Scholar 

  33. Hartle, J.B.: The quasiclassical realms of this quantum universe. Found. Phys. 41, 982–1006 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Griffiths, R.B.: Consistent quantum realism: a reply to Bassi and Ghirardi. J. Stat. Phys. 99, 1409–1425 (2000)

    Article  MATH  Google Scholar 

  35. Griffiths, R.B.: Hilbert space quantum mechanics is noncontextual. Stud. Hist. Phil. Mod. Phys. 44, 174–181 (2013). arXiv:1201.1510

    Article  MATH  Google Scholar 

  36. Griffiths, R.B.: EPR, Bell, and quantum locality. Am. J. Phys. 79, 954–965 (2011). arXiv:1007.4281

    Article  ADS  Google Scholar 

  37. Griffiths, R.B.: Quantum locality. Found. Phys. 41, 705–733 (2011). arXiv:0908.2914

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Dowker, F., Kent, A.: On the consistent histories approach to quantum mechanics. J. Stat. Phys. 82, 1575–1646 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Kent, A.: Consistent sets yield contrary inferences in quantum theory. Phys. Rev. Lett. 78, 2874–2877 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Bassi, A., Ghirardi, G.C.: Decoherent histories and realism. J. Stat. Phys. 98, 457–494 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Griffiths, R.B., Hartle, J.B.: Comment on “Consistent sets yield contrary inferences in quantum theory”. Phys. Rev. Lett. 81, 1981 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Griffiths, R.B.: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002). arXiv:quant-ph/0207015

    Article  ADS  MathSciNet  Google Scholar 

  43. Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315–2318 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work described here is based on research supported by the National Science Foundation through Grant PHY-1068331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffiths, R.B. The New Quantum Logic. Found Phys 44, 610–640 (2014). https://doi.org/10.1007/s10701-014-9802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9802-4

Keywords

Navigation