Skip to main content
Log in

On Gravitational Effects in the Schrödinger Equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Schrödinger  equation for a particle of rest mass \(m\) and electrical charge \(ne\) interacting with a four-vector potential \(A_i\) can be derived as the non-relativistic limit of the Klein–Gordon  equation \(\left( \Box '+m^2\right) \varPsi =0\) for the wave function \(\varPsi \), where \(\Box '=\eta ^{jk}\partial '_j\partial '_k\) and \(\partial '_j=\partial _j -\mathrm {i}n e A_j\), or equivalently from the one-dimensional  action \(S_1=-\int m ds +\int neA_i dx^i\) for the corresponding point particle in the semi-classical approximation \(\varPsi \sim \exp {(\mathrm {i}S_1)}\), both methods yielding the equation \(\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi \) in Minkowski  space–time  , where \(\alpha ,\beta =1,2,3\) and \(\phi =-A_0\). We show that these two methods generally yield equations  that differ in a curved background  space–time  \(g_{ij}\), although they coincide when \(g_{0\alpha }=0\) if \(m\) is replaced by the effective mass \(\mathcal{M}\equiv \sqrt{m^2-\xi R}\) in both the Klein–Gordon  action \(S\) and \(S_1\), allowing for non-minimal coupling to the gravitational  field, where \(R\) is the Ricci scalar and \(\xi \) is a constant. In this case \(\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi \), where \(\phi ^{(\mathrm g)} =\sqrt{g_{00}}\) and \(\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} \), the correctness of the gravitational  contribution to the potential having been verified to linear order \(m\phi ^{(\mathrm g)} \) in the thermal-neutron beam interferometry experiment due to Colella et al. Setting \(n=2\) and regarding \(\varPsi \) as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div\({{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0\), where \({{\varvec{A}}}^{\alpha }=-A^{\alpha }\) and \({{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }\). The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the \(\mathcal{D}\)-dimensional  mini-superspace idealization, with particular regard to the vacuum potential \(\mathcal V\) and the characteristics of the ground state, assuming a gravitational  Lagrangian  \(L_\mathcal{D}\) which contains higher-derivative  terms up to order \(\mathcal{R}^4\). For the heterotic superstring theory  , \(L_\mathcal{D}\) consists of an infinite series in \(\alpha '\mathcal{R}\), where \(\alpha '\) is the Regge slope parameter, and in the perturbative approximation \(\alpha '|\mathcal{R}| \ll 1\), \(\mathcal V\) is positive semi-definite for \(\mathcal{D} \ge 4\). The maximally symmetric ground state satisfying the field equations is Minkowski  space for \(3\le {\mathcal {D}}\le 7\) and anti-de Sitter  space for \(8 \le \mathcal {D} \le 10\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity (In Russian). Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  2. Pollock, M.D.: On vacuum fluctuations and particle masses. Found. Phys. 42, 1300–1328 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Higgs, P.W.: Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  4. Grib, A.A., Mostepanenko, V.M., Frolov, V.M.: Spontaneous breaking of gauge symmetry in a nonstationary isotropic metric. Teor. Mat. Fiz. 33, 42–53 (1977). [Theor. Math. Phys. 33, 869–876 (1977)]

    Google Scholar 

  5. Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895–906 (1926)

    Google Scholar 

  6. Gordon, W.: Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys. 40, 117–133 (1926)

    Google Scholar 

  7. Lämmerzahl, C.: A Hamilton operator for quantum optics in gravitational fields. Phys. Lett. A203, 12–17 (1995)

    Article  ADS  Google Scholar 

  8. von Weyssenhoff, J.: Anschauliches zur Relativitätstheorie. Z. Phys. 95, 391–408 (1935)

    Google Scholar 

  9. Zel’manov, A.L.: Chronometric invariants and frames of reference in the general theory of relativity. Dokl. Akad. Nauk SSSR 107, 815–818 (1956). [Sov. Phys. Dokl. 1, 227 (1956)]

  10. Pollock, M.D.: On the gravito-electromagnetic analogy. Acta Phys. Pol. B42, 1767–1796 (2011)

    Article  Google Scholar 

  11. Kramers, H.A.: On the application of Einstein’s theory of gravitation to a stationary field of gravitation. Proc. Kon. Ned. Akad. Wet. Amsterdam 23, 1052–1073 (1922)

    ADS  Google Scholar 

  12. De Donder, Th.: La gravifique einsteinienne. Ann. de l’Obs. Royal de Belgique, 3. sér., t. I, Bruxelles: M. Hayez, 1922, pp. 73–268; Premiers compléments de la gravifique einsteinienne, pp. 317–355 (1922)

  13. Lanczos, K.: Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen. Phys. Zeit. 23, 537–539 (1922)

  14. Lancius, K.: Zur Theorie der Einsteinschen Gravitationsgleichungen. Z. Phys. 13, 7–16 (1923)

    Google Scholar 

  15. Fock, V.: The Theory of Space, Time and Gravitation, 2nd edn. Pergamon Press, Oxford (1964)

    Google Scholar 

  16. Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

    Article  ADS  Google Scholar 

  17. Greenberger, D.M., Overhauser, A.W.: Coherence effects in neutron diffraction and gravity experiments. Rev. Mod. Phys. 51, 43–78 (1979)

    Article  ADS  Google Scholar 

  18. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A117, 610–624 (1928)

    Article  ADS  Google Scholar 

  19. Dirac, P.A.M.: The quantum theory of the electron. Part II. Proc. R. Soc. Lond. A118, 351–361 (1928)

    Article  ADS  Google Scholar 

  20. Fock, V.: Geometrisierung der Diracschen Theorie des Elektrons. Z. Phys. 57, 261–277 (1929)

  21. Schrödinger, E.: Diracsches Elektron im Schwerefeld I. Sitz. Preuss. Akad. Wiss. Berlin, pp. 105–128 (1932)

  22. Pollock, M.D.: On the Dirac equation in curved space–time. Acta Phys. Pol. B41, 1827–1846 (2010)

    MathSciNet  Google Scholar 

  23. Weyl, H.: Elektron und Gravitation I. Z. Phys. 56, 330–352 (1929)

    Google Scholar 

  24. Pauli, W.: Über die Invarianz der Dirac’schen Wellengleichungen gegenüber Ähnlichkeitstransformationen des Linienelementes im Fall verschwindender Ruhmasse. Helv. Phys. Acta 13, 204–208 (1940)

    Google Scholar 

  25. Noether, E.: Invariante Variationsprobleme. Nachr. Kgl. Gesell. Wiss. Göttingen, Math-Phys. Kl., pp. 235–257 (1918)

  26. Weinberg, S.: From BCS to the LHC. Int. J. Mod. Phys. A23, 1627–1635 (2008)

    Google Scholar 

  27. Duff, M.J.: In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Inconsistency of Quantum Field Theory in Curved Space-Time, in Quantum Gravity 2, pp. 81–105. Clarendon Press, Oxford (1981)

  28. Møller, C.: The Theory of Relativity, 2nd edn. Clarendon Press, Oxford (1972)

    Google Scholar 

  29. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, 1967 Lectures in Mathematics and Physics, pp. 242–307. Benjamin, New York (1968)

    Google Scholar 

  30. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)

    Article  ADS  MATH  Google Scholar 

  31. Pollock, M.D.: On the derivation of the Wheeler–DeWitt equation in the heterotic superstring theory. Int. J. Mod. Phys. A7, 4149–4165 (1992); Erratum: On the derivation of the Wheeler–DeWitt equation in the heterotic superstring theory A27, 1292005(E) (2012)

    Google Scholar 

  32. Pollock, M.D.: Chronometric invariance and string theory. Mod. Phys. Lett. A23, 797–813 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. Pollock, M.D.: On the quartic higher-derivative gravitational terms in the heterotic superstring theory. Int. J. Mod. Phys. A21, 373–404 (2006); Erratum: On the quartic higher-derivative gravitational terms in the heterotic superstring theory A28, 1392001(E) (2013)

    Google Scholar 

  34. Bennett, C.L., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1–27 (2003)

    Article  ADS  Google Scholar 

  35. Komatsu, E., et al.: Five-year Wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330–376 (2009)

    Article  ADS  Google Scholar 

  36. Pollock, M.D.: On the positivity of the gravitational potential in the quantum-cosmological Schrödinger equation. Int. J. Mod. Phys. D3, 569–578 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  37. Pollock, M.D.: On the horizon hypothesis in quantum cosmology. Int. J. Mod. Phys. D5, 193–208 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  38. Pollock, M.D.: On the thermodynamics of cosmic dust. Acta Phys. Pol. B42, 195–207 (2011); Erratum: On the thermodynamics of cosmic dust B43, 121(E) (2012)

    Google Scholar 

  39. Cai, R.-G., Kim, S.P.: First law of thermodynamics and Friedmann equations of Friedmann Robertson Walker universe. J. High Energy Phys. 0502, 050 (2005)

    Google Scholar 

  40. Cai, R.-G., Cao, L.-M., Hu, Y.-P.: Hawking radiation of an apparent horizon in a FRW universe. Class. Quantum Grav. 26, 155018 (2009)

    Google Scholar 

  41. Pollock, M.D.: The Wheeler–DeWitt equation for the heterotic superstring theory including terms quartic in the Riemann tensor. Int. J. Mod. Phys. D4, 305–326 (1995); Erratum: The Wheeler–DeWitt equation for the heterotic superstring theory including terms quartic in the Riemann tensor D21, 1292002(E) (2012)

    Google Scholar 

  42. Pollock, M.D.: On the superstring Hamiltonian in the Friedmann space–time. Int. J. Mod. Phys. D15, 845–868 (2006); Erratum: On the superstring Hamiltonian in the Friedmann space–time D22, 1392001(E)(2013)

  43. Pollock, M.D.: On the quantum cosmology of the superstring theory including the effects of higher-derivative terms. Nucl. Phys. B324, 187–204 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  44. Pollock, M.D.: Maximally symmetric superstring vacua. Acta Phys. Pol. B40, 2689–2701 (2009)

    Google Scholar 

  45. Boulware, D.G., Deser, S.: String-generated gravity models. Phys. Rev. Lett. 55, 2656–2660 (1985)

    Article  ADS  Google Scholar 

  46. Pollock, M.D.: On the semi-classical approximation to the superstring theory. Int. J. Mod. Phys. A7, 6421–6430 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  47. Lapchinsky, V.G., Rubakov, V.A.: Canonical quantization of gravity and quantum field theory in curved space-time. Acta Phys. Pol. B10, 1041–1048 (1979)

    ADS  MathSciNet  Google Scholar 

  48. Halliwell, J.J., Hawking, S.W.: Origin of structure in the Universe. Phys. Rev. D31, 1777–1791 (1985)

    ADS  MathSciNet  Google Scholar 

  49. Kiefer, C.: Quantum Gravity, 3rd edn. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

Download references

Acknowledgments

This paper was written at the University of Cambridge, Cambridge, England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Pollock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, M.D. On Gravitational Effects in the Schrödinger Equation. Found Phys 44, 368–388 (2014). https://doi.org/10.1007/s10701-014-9776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9776-2

Keywords

Navigation