Skip to main content
Log in

The Pauli Exclusion Principle. Can It Be Proved?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The modern state of the Pauli exclusion principle studies is discussed. The Pauli exclusion principle can be considered from two viewpoints. On the one hand, it asserts that particles with half-integer spin (fermions) are described by antisymmetric wave functions, and particles with integer spin (bosons) are described by symmetric wave functions. This is a so-called spin-statistics connection. The reasons why the spin-statistics connection exists are still unknown, see discussion in text. On the other hand, according to the Pauli exclusion principle, the permutation symmetry of the total wave functions can be only of two types: symmetric or antisymmetric, all other types of permutation symmetry are forbidden; although the solutions of the Schrödinger equation may belong to any representation of the permutation group, including the multi-dimensional ones. It is demonstrated that the proofs of the Pauli exclusion principle in some textbooks on quantum mechanics are incorrect and, in general, the indistinguishability principle is insensitive to the permutation symmetry of the wave function and cannot be used as a criterion for the verification of the Pauli exclusion principle. Heuristic arguments are given in favor that the existence in nature only the one-dimensional permutation representations (symmetric and antisymmetric) are not accidental. As follows from the analysis of possible scenarios, the permission of multi-dimensional representations of the permutation group leads to contradictions with the concept of particle identity and their independence. Thus, the prohibition of the degenerate permutation states by the Pauli exclusion principle follows from the general physical assumptions underlying quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. The matrices of transpositions for all irreducible representations of groups π 2 π 6 are presented in book [11], Appendix 5.

  2. For a more detailed treatise see books by Kaplan [11] and Hamermesh [81].

  3. Operator (33) should not be mixed up with the operator that symmetrizes the rows and antisymmetrizes the columns in Young diagram, which is also often referred to as the Young operator [81].

References

  1. Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765–783 (1925)

    Article  ADS  MATH  Google Scholar 

  2. Pauli, W.: Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den Zeemaneffekt. Z. Phys. 31, 373–385 (1925)

    Article  ADS  MATH  Google Scholar 

  3. Uhlenbeck, G.E., Goudsmit, S.: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Naturwissenschaften 13, 953–954 (1925)

    Article  ADS  MATH  Google Scholar 

  4. van der Waerden, B.L.: Exclusion principle and spin. In: Fierz, M., Weisskopf, V.F. (eds.) Theoretical Physics in the Twentieth Century, pp. 199–244. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  5. Heisenberg, W.: Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys. 38, 411–426 (1926)

    Article  ADS  MATH  Google Scholar 

  6. Dirac, P.A.M.: On the theory of quantum mechanics. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 112, 621–641 (1926)

    Article  ADS  Google Scholar 

  7. Dieke, H.G., Babcock, H.D.: The structure of the atmospheric absorption bands of oxygen. Proc. Natl. Acad. Sci. USA 13, 670–678 (1927)

    Article  ADS  Google Scholar 

  8. Hilborn, R.C., Yuca, C.L.: Spectroscopic test of the symmetrization postulate for spin-0 nuclei. Phys. Rev. Lett. 76, 2844–2847 (1996)

    Article  ADS  Google Scholar 

  9. Kaplan, I.G.: Method for finding allowed multiplets in calculation of many-electron systems. Sov. Phys. JETP 24, 114–119 (1967)

    ADS  Google Scholar 

  10. Kaplan, I.G., Rodimova, O.B.: Group theoretical classification of states of molecular systems with definite states of its constituent parts. Int. J. Quant. Chem. 10, 690–714 (1976)

    Article  Google Scholar 

  11. Kaplan, I.G.: Symmetry of Many-Electron Systems. Academic Press, New York (1975)

    Google Scholar 

  12. Girardeau, M.D.: Formulation of the many-body problem for composite particles. J. Math. Phys. 4, 1096–1116 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Girardeau, M.D.: Second-quantization representation for systems of atoms, nuclei, and electrons. Phys. Rev. Lett. 27, 1416–1419 (1971)

    Article  ADS  Google Scholar 

  14. Gilbert, J.D.: Second-quantized representation for a model system with composite particles. J. Math. Phys. 18, 791–806 (1977)

    Article  ADS  Google Scholar 

  15. Law, C.K.: Quantum entanglement as an interpretation of bosonic character in composite two-particle systems. Phys. Rev. A 71, 034306 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. Sancho, P.: Compositeness effects, Pauli’s principle and entanglement. J. Phys. A, Math. Gen. 39, 12525–12537 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Schrieffer, J.R.: Theory of Superconductivity. Addison-Wesley, Redwood City (1988)

    Google Scholar 

  18. Zeldovich, Ya.B.: The number of elementary baryons and the universal baryons repulsion hypothesis. Sov. Phys. JETP 10, 403 (1960)

    Google Scholar 

  19. Huzinaga, S., McWilliams, D., Cantu, A.A.: Projection operators in Hartree-Fock theory. Adv. Quantum Chem. 7, 187–220 (1973)

    Article  ADS  Google Scholar 

  20. Pascual, J.L., Barros, N., Barandiarán, Z., Seijo, L.: Improved embedding ab initio model potentials for embedded cluster calculations. J. Phys. Chem. A 113, 12454–12460 (2009)

    Article  Google Scholar 

  21. Gutowski, M., Piela, L.: Interpretation of the Hartree-Fock interaction energy between closed-shell systems. Mol. Phys. 64, 337–355 (1988)

    Article  ADS  Google Scholar 

  22. Rajchel, Ł., Zuchowski, P.S., Szczesńiak, M.M., Chałasiński, G.: Derivation of the supermolecular interaction energy from the monomer densities in the density functional theory. Chem. Phys. Lett. 486, 160–165 (2010)

    Article  ADS  Google Scholar 

  23. Cavalcanti, D., Malard, L.M., Matinaga, F.M., Terra Cunha, M.O., França Santos, M.: Useful entanglement from the Pauli principle. Phys. Rev. B 76, 113304 (2007)

    Article  ADS  Google Scholar 

  24. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 867–942 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  27. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  28. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  29. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58, 731–734 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  31. Hilborn, R.C., Tino, G.M. (eds.): Spin-Statistics Connection and Commutation Relations. AIP Conf. Proc., vol. 545. AIP, Melville (2000)

    Google Scholar 

  32. Greenberg, O.W., Mohapatra, R.N.: Phemenology of small violations of Fermi and Bose statistics. Phys. Rev. D 39, 2032–2038 (1989)

    Article  ADS  Google Scholar 

  33. Okun, L.B.: Tests of electric charge conservation and the Pauli principle. Sov. Phys. Usp. 32, 543–547 (1989)

    Article  ADS  Google Scholar 

  34. Ignatiev, A.Y.: X rays test of the Pauli exclusion principle. Radiat. Phys. Chem. 75, 2090–2096 (2006)

    Article  ADS  Google Scholar 

  35. VIP Collaboration: http://www.lnf.infn.it/esperimenti/ (2005)

  36. Curceanu, C. (Petrascu), et al.: Experimental tests of quantum mechanics—Pauli exclusion principle violation (the VIP experiment) and future perspective. Int. J. Quantum Inf. 9, 145–154 (2011)

    Article  Google Scholar 

  37. Curceanu, C. (Petrascu), et al.: New experimental limit on the Pauli exclusion principle violation by electrons-the VIP experiment. Found. Phys. 41, 282–287 (2011)

    Article  ADS  Google Scholar 

  38. Elliott, S.R., LaRoque, B.H., Gehman, V.M., Kidd, M.F., Chen, M.: An improved limit on Pauli-exclusion-principle forbidden atomic transitions. Found. Phys. 42, 1015–1030 (2012)

    Article  ADS  Google Scholar 

  39. Ignatiev, A.Yu., Kuzmin, V.A.: Is the weak violation of the Pauli exclusion principle possible? Sov. J. Nucl. Phys. 461, 786 (1987)

    Google Scholar 

  40. Greenberg, O.W., Mohapatra, R.N.: Local quantum field theory of possible violation of the Pauli principle. Phys. Rev. Lett. 59, 2507–2510 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  41. Pauli, W.: Nobel Lecture. In: Nobel Lectures, Physics, pp. 1942–1962. Elsevier, Amsterdam (1964)

    Google Scholar 

  42. Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940)

    Article  ADS  Google Scholar 

  43. Green, H.S.: A generalized method of field quantization. Phys. Rev. 90, 270–273 (1953)

    Article  ADS  MATH  Google Scholar 

  44. Volkov, D.V.: On the quantization of half-integer spin fields. Sov. Phys. JETP 9, 1107–1111 (1959)

    MATH  Google Scholar 

  45. Ohnuki, Y., Kamefuchi, S.: Quantum Field Theory and Parastatistics. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  46. Duck, I., Sudarshan, E.C.G.: Pauli and the Spin-Statistics Theorem. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  47. Wightman, A.S.: Pauli and the spin-statistics theorem. Am. J. Phys. 67, 742 (1999)

    Article  ADS  Google Scholar 

  48. Berry, M., Robbins, J.: Quantum indistinguishability: spin-statistics without relativity or field theory? In: Hilborn, R.C., Tino, G.M. (eds.) Spin-Statistics Connection and Commutation Relations. AIP Conf. Proc., vol. 545, pp. 3–15. AIP, Melville (2000)

    Google Scholar 

  49. Chernikov, N.A.: The Fock representation of the Duffin-Kemmer algebra. Acta Phys. Pol. 21, 52–60 (1962)

    MathSciNet  Google Scholar 

  50. Greenberg, O.W.: Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598–602 (1964)

    Article  ADS  Google Scholar 

  51. Govorkov, A.B.: Parastatistics and internal symmetry. Sov. J. Part. Nucl. 14, 520–537 (1983)

    MathSciNet  Google Scholar 

  52. Kaplan, I.G.: Statistics of molecular excitons and magnons for large concentration. Theor. Math. Phys. 27, 254–261 (1976)

    Article  Google Scholar 

  53. Avdyugin, A.N., Zavorotnev, Yu.D., Ovander, L.N.: Polaritons in highly excited crystals. Sov. Phys., Solid State 25, 1437–1438 (1983)

    Google Scholar 

  54. Pushkarov, D.I.: On the defecton statistics in quantum crystals. Phys. Status Solidi B, Basic Solid State Phys. 133, 525–531 (1986)

    Article  ADS  Google Scholar 

  55. Nguen, A., Hoang, N.C.: An approach to the many-exciton system. J. Phys. Condens. Matter 2, 4127–4136 (1990)

    Article  ADS  Google Scholar 

  56. Kaplan, I.G., Navarro, O.: Charge transfer and the statistics of holons in periodical lattice. J. Phys. Condens. Matter 11, 6187–6195 (1999)

    Article  ADS  Google Scholar 

  57. Kaplan, I.G., Navarro, O.: Statistic and properties of coupled hole pairs in superconducting ceramics. Physica C, Supercond. 341(348), 217–220 (2000)

    Article  Google Scholar 

  58. Kaplan, I.G.: Pauli spin-statistics theorem and statistics of quasiparticles in a periodical lattice. In: Hilborn, R.C., Tino, G.M. (eds.) Spin-Statistics Connection and Commutation Relations. AIP Conf. Proc., vol. 545, pp. 72–78. AIP, Melville (2000)

    Google Scholar 

  59. Kaplan, I.G.: The Pauli exclusion principle, spin-statistics connection, and permutation symmetry of many-particles wave functions. In: Brandas, E.J., Kryachko, E.S. (eds.) Fundamental World of Quantum Chemistry, vol. 1, pp. 183–220. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  60. Kaplan, I.G.: Symmetry postulate and its foundation in quantum mechanics. In: Man’ko, V.I. (ed.) Group Theoretical Methods in Physics, vol. 1, pp. 175–183. Nauka, Moscow (1980)

    Google Scholar 

  61. Kaplan, I.G.: Exclusion principle and indistinguishability of identical particles in quantum mechanics. J. Mol. Struct. 272, 187–196 (1992)

    Article  ADS  Google Scholar 

  62. Kaplan, I.G.: Is the Pauli exclusive principle an independent quantum mechanical postulate? Int. J. Quant. Chem. 89, 268–276 (2002)

    Article  Google Scholar 

  63. Pauli, W.: Remarks on the history of the exclusion principle. Science 103, 213–215 (1946)

    Article  ADS  Google Scholar 

  64. Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  65. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  66. Messiah, A.M.: Quantum Mechanics. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  67. Messiah, A.M., Greenberg, O.W.: Symmetrization postulate and its experimental foundation. Phys. Rev. 136, B248–B267 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  68. Girardeau, M.D.: Permutation symmetry of many-particle wave function. Phys. Rev. 139, B500–B508 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  69. Corson, E.M.: Perturbation Methods in Quantum Mechanics of Electron Systems. University Press, Glasgow (1951)

    MATH  Google Scholar 

  70. Landau, L.D., Lifschitz, E.M.: Quantum Mechanics. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  71. Blokhintzev, D.I.: Principles of Quantum Mechanics. Allyn and Bacon, Boston (1964)

    Book  Google Scholar 

  72. Kaplan, I.G.: The exclusion principle and indistinguishability of identical particles in quantum mechanics. Sov. Phys. Usp. 18, 988–994 (1976)

    Article  ADS  Google Scholar 

  73. Canright, G.S., Girvin, S.M.: Fractional statistics: quantum possibilities in two dimensions. Science 247, 1197–1205 (1990)

    Article  ADS  Google Scholar 

  74. Girardeau, M.D.: Proof of the symmetrization postulate. J. Math. Phys. 10, 1302–1304 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. von Neumann, J.V.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955). English translation by R.T. Beyer

    MATH  Google Scholar 

  76. Fock, V.A.: Lectures on Quantum Mechanics. Manuscript, B31, F-750, Library of Physical Faculty, St Petersburg State University (1937)

  77. Kaplan, I.G.: Problems in DFT with the total spin and degenerate states. Int. J. Quant. Chem. 107, 2595–2603 (2007)

    Article  ADS  Google Scholar 

  78. Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Row Peterson, New York (1961)

    Google Scholar 

  79. Kaplan, I.G., Rodimova, O.B.: Matrix elements of general configuration of nonorthogonal orbital in state with definite spin. Int. J. Quant. Chem. 7, 1203–1220 (1973)

    Article  Google Scholar 

  80. March, N.H., Young, W.H., Sampanthar, S.: The Many-Body Problem in Quantum Mechanics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  81. Hamermesh, M.: Group Theory. Addison-Wesley, Reading (1962)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Serge Zagoulaev and Steve Elliot for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kaplan.

Appendix: Short Necessary Knowledge on the Permutation Group

Appendix: Short Necessary Knowledge on the Permutation Group

The permutation symmetry is classified according to the irreducible representations of the permutation group π N .Footnote 2 The latter are labeled by the Young diagrams

$$[ \lambda ] = [ \lambda_{1} \lambda_{2} \cdots \lambda_{k} ], $$
$$ \lambda_{1} \geq \lambda_{2} \geq\cdots \geq \lambda_{k},\quad \sum_{i =1}^{k} \lambda_{i} = N , $$
(32)

where λ i is represented by a row of λ i cells. The presence of several rows of equal length λ i is convenient to indicate by a power of λ i . For example,

figure a

It is obvious that one can form from two cells only two Young diagrams:

figure b

For the permutation group of three elements, π 3, one can form from three cells three Young diagrams:

figure c

The group π 4 has five Young diagrams:

figure d

Each Young diagram [λ] uniquely corresponds to a specific irreducible representation Γ [λ] of the group π N . The assignment of a Young diagram determines the permutation symmetry of the basis functions for an irreducible representation, i.e. determines the behavior of the basis functions under permutations of their arguments. A diagram with only one row corresponds to a function symmetrical in all its arguments. A Young diagram with one column corresponds to a completely antisymmetrical function. All other types of diagrams correspond to intermediate types of symmetry. There are certain rules that enable one to find the matrices of irreducible representations of the permutations group from the form of the corresponding Young diagram. Such rules are especially simple in the case of the so-called standard orthogonal representation (this is the Young-Yamanouchi representation; see Ref. [11]).

The basis functions for an irreducible representation Γ [λ] can be constructed by means of the so-called normalized Young operators [11],Footnote 3

$$ \omega_{rt}^{ [ \lambda ]} = \sqrt{\frac{f_{\lambda}}{N !}} \sum _{P} \varGamma_{rt}^{ [ \lambda ]} ( P ) P, $$
(33)

where the summation over P runs over all the N! permutations in the group π N , \(\varGamma_{rt}^{ [ \lambda ]} ( P )\) are the matrix elements and f λ is the dimension of the irreducible representation Γ [λ]. The application of operator (33) to a nonsymmetrized product of orthonormal one-particle functions φ a

$$ \varPhi_{0} = \varphi_{1} ( 1 ) \varphi_{2} ( 2 ) \cdots \varphi_{N} ( N ) $$
(34)

produces a normalized function

$$ \varPhi_{rt}^{\lambda} = \omega_{rt}^{ [ \lambda ]} \varPhi_{0} = \sqrt{\frac{f_{\lambda}}{N !}} \sum _{P} \varGamma_{rt}^{ [ \lambda ]} ( P ) P \varPhi_{0} $$
(35)

transforming in accordance with the representation Γ [λ]. Let us prove this statement applying an arbitrary permutation Q of the group π N to the function (35):

$$ Q\varPhi_{rt}^{ [ \lambda ]} = \sqrt{\frac{f_{\lambda}}{N !}} \sum _{P} \varGamma_{rt}^{ [ \lambda ]} ( P ) QP \varPhi_{0} = \sqrt{\frac{f_{\lambda}}{N !}} \sum _{R} \varGamma_{rt}^{ [ \lambda ]} \bigl( Q^{- 1} R \bigr) R \varPhi_{0}. $$
(36)

In this equation we have denoted the permutation QP by R and made use of the invariance properties of a sum over all group elements. Further, we write the matrix element of the product of permutations as products of matrix elements and make use of the property of orthogonal matrices:

$$ \varGamma_{rt}^{ [ \lambda ]} \bigl( Q^{- 1} R \bigr) = \sum _{u} \varGamma_{ru}^{ [ \lambda ]} \bigl( Q^{- 1} \bigr) \varGamma_{ut}^{ [ \lambda ]} ( R ) =\sum _{u} \varGamma_{ur}^{ [ \lambda ]} ( Q ) \varGamma_{ut}^{ [ \lambda ]} ( R ). $$
(37)

Substituting (37) in (36), we obtain finally

$$ Q \varPhi_{rt}^{ [ \lambda ]} = \sqrt{\frac{f_{\lambda}}{N !}} \sum _{u} \varGamma_{ur}^{ [ \lambda ]} ( Q ) \biggl( \sum_{R} \varGamma_{ut}^{ [ \lambda ]} ( R ) R \varPhi_{0} \biggr)= \sum_{u} \varGamma_{ur}^{ [ \lambda ]} ( Q ) \varPhi_{ut}^{[\lambda]}. $$
(38)

The function \(\varPhi_{rt}^{ [ \lambda ]}\) transforms as the r-th column of the irreducible representation Γ [λ], and the set of f λ functions \(\varPhi_{rt}^{ [ \lambda ]}\) with fixed second index t forms a basis for the irreducible representation Γ [λ]. One can form altogether f λ independent bases corresponding to the number of different values of t. This should be expected, since N! functions 0 form a basis for the regular representation of π N , and in the decomposition of the regular representation, each irreducible representation occurs as many times as its dimension. The first index, r, characterizes the symmetry of the function \(\varPhi_{rt}^{ [ \lambda ]}\) under permutation of the arguments. It can be shown [11] that the second index, t, enumerating the different bases of Γ [λ], characterizes the symmetry of \(\varPhi_{rt}^{ [ \lambda ]}\) under permutations of the one-particle functions φ a .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, I.G. The Pauli Exclusion Principle. Can It Be Proved?. Found Phys 43, 1233–1251 (2013). https://doi.org/10.1007/s10701-013-9742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9742-4

Keywords

Navigation