Skip to main content
Log in

Chronogenesis, Cosmogenesis and Collapse

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A simple quantum model describing the onset of time is presented. This is combined with a simple quantum model of the onset of space. A major purpose is to explore the interpretational issues which arise. The state vector is a superposition of states representing different “instants.” The sample space and probability measure are discussed. Critical to the dynamics is state vector collapse: it is argued that a tenable interpretation is not possible without it. Collapse provides a mechanism whereby the universe size, like a clock, is narrowly correlated with the quantized time eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A treatment of collapse choosing a universe within the context of the inflaton theory of cosmogenesis.

  2. As pointed out there, if one wishes to have exponential grown of the volume in the universe, one may replace g(a +a) in Eq. (30) by g(a +a)2.

References

  1. Weinberg, S.: Cosmology, p. 208. Oxford University Press, Oxford (2008). Sect. 4.2

    MATH  Google Scholar 

  2. Rovelli, C.: Notes for a brief history of quantum gravity. arXiv:gr-qc/0006061

  3. Page, D., Wootters, W.: Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  4. Canate, P., Pearle, P., Sudarsky, D.: arXiv:1211.3463v1 [gr-qc]

  5. Barbour, J.: The End of Time. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  6. Rovelli, C.: Forget Time, FQXI essay. http://fqxi.org/community/essay/winners/2008.1

  7. Steinhardt, P.J., Turok, N.: New Astron. Rev. 49, 43 (2005)

    Article  ADS  Google Scholar 

  8. Baum, L., Frampton, P.H.: Phys. Rev. Lett. 98, 071301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  9. Penrose, R.: Cycles of Time: An Extraordinary New View of the Universe. Bodley Head, London (2010)

    MATH  Google Scholar 

  10. Ellis, G.: The Flow of Time, Carroll, S.: What if Time Really Exists? FQXI essays. http://fqxi.org/community/essay/winners/2008.1

  11. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bell, J.S.: In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty, p. 17. Plenum, New York (1990)

    Chapter  Google Scholar 

  13. Pearle, P.: Am. J. Phys. 35, 7422 (1967)

    Article  Google Scholar 

  14. Ballentine, L.: Rev. Mod. Phys. 42, 358–381 (1970)

    Article  ADS  MATH  Google Scholar 

  15. Pearle, P.: Phys. Rev. A 39, 2277 (1989)

    Article  ADS  Google Scholar 

  16. Ghirardi, G.C., Pearle, P., Rimini, A.: Phys. Rev. A 42, 78 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  17. Pearle, P.: In: Petruccione, F., Breuer, H.P. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, p. 195. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Pearle, P.: J. Phys. A, Math. Theor. 40, 3189 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Pearle, P.: In: Myrvold, W., Christian, J. (eds.) Quantum Reality, Relativistic Causality and Closing the Epistemic Circle, pp. 257–292. Springer, Berlin (2009)

    Chapter  Google Scholar 

  20. Bassi, A., Ghirardi, G.C.: Phys. Rep. 379, 257 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Bassi, A., et al.: arXiv:1204.4325 (to be published in Revs. Mod. Phys.)

  22. Pearle, P.: Phys. Rev. D 29, 235 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. Squires, E.: Phys. Rev. Lett. 73, 1 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  24. Collett, B., Avignone, F.T., Nussinov, S.: Found. Phys. 25, 1399 (1995)

    Article  ADS  Google Scholar 

  25. Avignone, F.T., Collar, J.I., Ring, J.: Found. Phys. 29, 465 (1999)

    Article  Google Scholar 

  26. Collett, B.: Found. Phys. 33, 1495 (2003)

    Article  MathSciNet  Google Scholar 

  27. Jones, G., Ring, J.: Found. Phys. 34, 1467 (2004)

    Article  ADS  Google Scholar 

  28. Zeilinger, A.: In: Penrose, R., Isham, C.J. (eds.) Quantum Concepts in Space and Time. Clarendon, Oxford (1986)

    Google Scholar 

  29. Fu, Q.: Phys. Rev. A 56, 1806 (1997)

    Article  ADS  Google Scholar 

  30. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Phys. Rev. Lett. 91, 130401 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  31. Adler, S.: J. Phys. A, Math. Theor. 40, 2935–2957 (2007)

    Article  ADS  MATH  Google Scholar 

  32. Nimmrichter, S., Hornberger, K., Haslinger, P., Arndt, M.: Phys. Rev. A 83, 043621 (2011)

    Article  ADS  Google Scholar 

  33. Feldmann, W., Tumulka, R.: arXiv:1109.6579 (2011)

  34. Cox, R.T.: The Algebra of Probable Inference. Johns Hopkins Press, Baltimore (1961)

    MATH  Google Scholar 

  35. Pearle, P.: Found. Phys. 42, 4 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Sudarshan, E.C.G., Misra, B.: J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Carl Rubino for help with Greek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Pearle.

Appendix: Calculation of \(\overline{\langle N\rangle^{2}/\langle1 \rangle}\)

Appendix: Calculation of \(\overline{\langle N\rangle^{2}/\langle1 \rangle}\)

We begin with the expression for |〈n|ψ,t w |2 given in Eq. (38). The Poisson distribution appears there. For large n, the Poisson distribution [x n/n!]e x can be replaced by its gaussian approximation (2πx)−1/2exp−[(nx)2/2x], which is good for large x,n. Since it is the large t limit which is of interest, and large n’s are excited for large t, this is a good approximation. We make this replacement in Eq. (38), obtaining

(47)

We note that this approximation does not change the calculated values of \(\overline{\langle N\rangle}\) and \(\overline{\langle N^{2}\rangle}\), since

(48)

which is Eq. (39), and similarly

(49)

which is Eq. (41).

In Eq. (47), because the width of the gaussian \(\sqrt{ \alpha^{\prime*}(t)\alpha(t)}\) is small compared to the mean value α′(t)α(t), we make the approximation w−2λααw−2λn. With this approximation, and a change of variables to ξ(t)≡η(t)−η′(t), μ(t)≡η(t)+η′(t), Eq. (47) becomes

(50)

This approximation also does not change the results of the above calculations of \(\overline{\langle N\rangle}\) and \(\overline{\langle N^{2}\rangle}\). If the integral over Dw is performed in Eq. (50), the result is \(\prod_{t'=0}^{t}\delta[\xi(t')]\). Then, the integral can be performed, with the result

$$\int Dw \bigl|\langle n|\psi, t\rangle_{w}\bigr|^{2}= \int D\mu e^{-\frac{\lambda }{2}\int_{0}^{t}dt'\mu^{2}(t')} \frac{1}{\sqrt{2\pi\alpha^{\prime*}\alpha }}e^{-\frac{[n-\alpha^{\prime*}\alpha]^{2}}{2\alpha^{\prime*}\alpha}} $$

Setting μ=2η, this is identical to the expression for ∫Dw|〈n|ψ,t w |2 in the middle integral of Eqs. (48), (49), which gives the correct expressions for \(\overline {\langle N\rangle}\) and \(\overline{\langle N^{2}\rangle}\).

Therefore, as our last approximation, we replace the gaussian in the second integral in Eq. (50) by a gaussian in n which gives these same correct expressions, obtaining

(51)

where \(\sigma^{2}\equiv\overline{\langle N^{2}\rangle }-\overline{\langle N\rangle}^{2}\).

Now, just as in Sect. 2.2.1, we can change variables to B(t′)’s from w(t′)’s, and integrate over all B(t′)’s except B(t), obtaining the equivalent of Eq. (51),

$$ \bigl|\langle n|\psi, t\rangle_{B}\bigr|^{2}\approx \frac{1}{2\pi\sqrt{\lambda t\sigma^{2}}}e^{-\frac{1}{2\lambda t}[B(t)-2\lambda t n]^{2}}e^{-\frac { [n-\overline{\langle N\rangle} ]^{2}}{2\sigma^{2}}}. $$
(52)

The rest of the calculation is straightforward. We immediately find the quantities

(53)
(54)

where 1 has been neglected compared to 4λtσ 2. Also, \(\overline{\langle N\rangle}/2\sigma^{2}\), whose contribution vanishes as t→∞, has been neglected compared to B, whose contribution is infinite in that limit.

Finally, using Eqs. (53), (54), we calculate

(55)

Although our result is \(\overline{\sigma_{N}^{2}}=\overline{\langle N^{2}\rangle}- \overline{\langle N\rangle^{2}/\langle1 \rangle} =0\), in view of the approximations made without assessing the errors involved, it is more conservative to conclude that \(\overline{\sigma _{N}^{2}}\sim t\) at worst, which still results in \(\overline{\sigma _{N}^{2}}/\overline{\langle N\rangle^{2}}\rightarrow0\) as t→∞.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearle, P. Chronogenesis, Cosmogenesis and Collapse. Found Phys 43, 747–768 (2013). https://doi.org/10.1007/s10701-013-9714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9714-8

Keywords

Navigation