Skip to main content
Log in

Derivation of the Dirac Equation by Conformal Differential Geometry

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by an ansatz solution that can be straightforwardly interpreted as the “quantum wave function” of the 4-spinor solution of Dirac’s equation. All quantum features arise from the subtle interplay between the conformal curvature acting on the particle as a potential and the particle motion which affects the geometric “pre-potential” associated to the conformal curvature itself. The theory, carried out here by assuming a Minkowski metric, can be easily extended to arbitrary space-time Riemann metric, e.g. the one adopted in the context of General Relativity. This novel theoretical scenario appears to be of general application and is expected to open a promising perspective in the modern endeavor aimed at the unification of the natural forces with gravitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. According to the Felix Klein Erlangen program, the affine geometry deals with intrinsic geometric properties that remain unchanged under affine transformations (affinities). These preserve collinearity transformations e.g. sending parallels into parallels, and ratios of distances along parallel lines. The Weyl geometry is considered a kind of affine geometry preserving angles. Cfr: H. Coxeter, Introduction to Geometry (Wiley, New York 1969).

  2. The configuration space of the top described by the Lagrangian L is the principal fiber bundle whose base is the Minkowski space-time \({\mathcal{M}}_{4}\) and whose fiber is SO(3,1), conceived as a proper Lorentz frame manifold. The dynamical invariance group is the whole Poincaré group of the inhomogeneous Lorentz transformations.

  3. More specifically, \(A_{\alpha}=\xi^{r}_{\alpha}(\theta)A_{r}(x)\) (α,r=1,…,6), where \(A_{r}(x)=-\frac{\kappa}{2}\{\boldsymbol{H}(x), \boldsymbol{E}(x)\}\) and \(\xi^{r}_{\alpha}(\theta)\) are the Killing vectors of the Lorentz group SO(3,1).

  4. The action of D i over a tensor field F of Weyl type w(F) is given by \(D_{i} F = \nabla^{(\varGamma)}_{i} F -2w(F)\phi_{i}F\), where ϕ i is the Weyl potential and \(\nabla^{(\varGamma)}_{i}\) is the covariant derivative built up from the Weyl connections \(\varGamma^{i}_{jk}\) given by Eq. (4). The Weyl type of D i F is the same as of F. Because w(S)=0, we have D i S=∂S/∂q i.

  5. The two matrices are related by [D (u,v)(Λ)]=[D (v,u)(Λ)]−1.

  6. The spinors \(\psi^{\sigma '}_{\sigma}(x)\) and \(\psi^{\dot{\sigma}'}_{\dot{\sigma}}(x)\) are invariant with respect to their lower indices, which are related to the spin component along the top axis.

References

  1. Atre, M.V., Mukunda, N.: Classical particles with internal structure: general formalism and application to first-order internal spaces. J. Math. Phys. 27, 2908–2919 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Regge trajectories and the principle of maximum strength for strong interactions. Phys. Lett. 89B, 199–202 (1980)

    MathSciNet  ADS  Google Scholar 

  3. Balachandran, A.P., Marmo, G., Skagerstam, B.S., Stern, A.: Gauge Symmetries and Fibre Bundles: Applications to Particle Dynamics. Lecture Notes in Physics, vol. 188. Springer, Berlin (1983)

    MATH  Google Scholar 

  4. Biedenharn, L.C., Dam, H.V., Marmo, G., Morandi, G., Mukunda, N., Samuel, J., Sudarshan, E.C.G.: Classical models for Regge trajectories. I. J. Mod. Phys. A 2, 1567–1589 (1987)

    Article  ADS  Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  7. Brown, L.M.: Two-component fermion theory. Phys. Rev. 111(3), 957–964 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chew, G.F., Frautschi, S.C.: Regge trajectories and the principle of maximum strength for strong interactions. Phys. Rev. Lett. 8, 41–44 (1962)

    Article  ADS  Google Scholar 

  9. Corben, H.C.: Classical and Quantum Theory of Spinning Particles. Holden-Day, San Francisco (1968)

    Google Scholar 

  10. Frenkel, J.: Die elektrodynamik des rotierenden elektrons. Z. Phys. 37, 243–262 (1926)

    ADS  MATH  Google Scholar 

  11. Hanson, A.J., Regge, T.: The relativistic spherical top. Ann. Phys. (NY) 87, 498–566 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kiefer, C.: Quantum gravity: whence, whither? In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity, pp. 1–13. Springer, Basel (2012). doi:10.1007/978-3-0348-0043-3-1

    Chapter  Google Scholar 

  13. Landau, L., Lifs̆itz, E., Pitaevsky, L.: Relativistic Quantum Theory. Pergamon Press, New York (1960)

    Google Scholar 

  14. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40, 332 (1926)

    Google Scholar 

  15. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  16. Penrose, R.: Gravity and quantum mechanics. In: Gleiser, R., Kozameh, C., Moreschi, O. (eds.) General Relativity and Gravitation. IOP, Bristol (1993)

    Google Scholar 

  17. Penrose, R.: The Road to Reality. J. Cape, London (2004)

    Google Scholar 

  18. Penrose, R., Hawking, S.W.: The Nature of Space and Time. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  19. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  20. Santamato, E.: Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces. Phys. Rev. D 29, 216 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  21. Santamato, E.: Gauge-invariant statistical mechanics and average action principle for the Klein-Gordon particle in geometric quantum mechanics. Phys. Rev. D 32, 2615 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  22. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philol. Soc. 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  23. Santamato, E., De Martini, F.: Solving the quantum nonlocality enigma by Weyl’s conformal geometrodynamics (2012). arXiv:1203.0033v1 [quant-ph]

  24. Schulman, L.S.: Relativistic spin: tops and wave equations. Nucl. Phys. B 18, 595–606 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  25. Souriau, J.M.: Structure des systèmes dynamiques. Dunod Université, Paris (1969)

    Google Scholar 

  26. Sudarshan, E.C.G., Mukunda, N.: Classical Dynamics: A Modern Perspective. Wiley, New York (1974)

    MATH  Google Scholar 

  27. Thomas, L.H.: The motion of the spinning electron. Nature 117, 514 (1926)

    Article  ADS  Google Scholar 

  28. Wang, C.H.T.: New “phase” of quantum gravity. Philos. Trans. R. Soc. A 364(1849), 3375–3388 (2006). doi:10.1098/rsta.2006.1904

    Article  ADS  MATH  Google Scholar 

  29. Weyl, H.: Gravitation und elektrizität. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1, 465–480 (1918). Reprinted in: The Principles of Relativity, Dover, New York (1923)

    Google Scholar 

  30. Weyl, H.: Space, Time, Matter, 4th edn. Dover Publications, Inc., New York (1952)

    Google Scholar 

  31. Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962)

    MATH  Google Scholar 

  32. Wilczek, F.: Treks of imagination. Science 307(5711), 852–853 (2005). doi:10.1126/science.1106081

    Article  Google Scholar 

Download references

Acknowledgement

We thank dott. Paolo Aniello for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Santamato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamato, E., De Martini, F. Derivation of the Dirac Equation by Conformal Differential Geometry. Found Phys 43, 631–641 (2013). https://doi.org/10.1007/s10701-013-9703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9703-y

Keywords

Navigation