Skip to main content
Log in

Time as a Geometric Concept Involving Angular Relations in Classical Mechanics and Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The goal of this paper is to introduce the notion of a four-dimensional time in classical mechanics and in quantum mechanics as a natural concept related with the angular momentum. The four-dimensional time is a consequence of the geometrical relation in the particle in a given plane defined by the angular momentum. A quaternion is the mathematical entity that gives the correct direction to the four-dimensional time.

Taking into account the four-dimensional time as a vectorial quaternionic idea, we develop a set of generalizations and conclusions over the mechanics.

In quantum mechanics, the four-dimensional time appears as an observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)

    Google Scholar 

  2. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  3. Arnold, V.I.: Mathematical Method of Classical Mechanics. Springer, New York (1989)

    Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  5. Fueter, R.: Die Singularitäten der eindeutigen regulären Funktionen einer Quaternionen-variablen. Comment. Math. Helv. 9, 320–335 (1937)

    Article  Google Scholar 

  6. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85, 199–225 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Passman, D.S.: The Algebraic Structure of Group Rings to Complex. Pure and Applied Mathematics. Wiley, New York (1977)

    Google Scholar 

  8. Deavours, C.A.: The quaternion calculus. Am. Math. Mon. 80, 995–1008 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dummit, D.S., Foote, R.M.: Abstract Algebra. Wiley, New York (2004)

    MATH  Google Scholar 

  10. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. Van Nostrand, Princeton (1966)

    MATH  Google Scholar 

  11. Kodaira, K.: Complex Manifolds and Deformation of Complex Structures. Springer, New York (1986)

    MATH  Google Scholar 

  12. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, New York (1992)

    MATH  Google Scholar 

  13. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading (1959)

    Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  15. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. I: Mechanics, Radiation, and Heat. Addison-Wesley, Reading (1966)

    Google Scholar 

  16. Arnold, V.I.: Mathematical Method of Classical Mechanics. Springer, New York (1989)

    Google Scholar 

  17. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I, II. Interscience Publishers, Wiley, New York (1963)

    Google Scholar 

  18. De Witt, B.: Field Theory in Particle Physics. North-Holland, Amsterdam (1986)

    Google Scholar 

  19. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Vol. II: Electromagnetism and Matter. Addison-Wesley, Reading (1966)

    Google Scholar 

  20. Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1963)

    MATH  Google Scholar 

  21. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Addison-Wesley, Reading (1951)

    MATH  Google Scholar 

  22. Courant, R., Hilbert, D.: Methoden der Mathemathischen Physik I. Springer, Berlin (1931)

    Google Scholar 

  23. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, Non-relativistic Theory. Pergamon, London (1958)

    Google Scholar 

  24. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley and Hermann, Paris (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Eduardo Reluz Machicote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reluz Machicote, J.E. Time as a Geometric Concept Involving Angular Relations in Classical Mechanics and Quantum Mechanics. Found Phys 40, 1744–1778 (2010). https://doi.org/10.1007/s10701-010-9479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9479-2

Keywords

Navigation