Skip to main content
Log in

Gravitation, Electromagnetism and Cosmological Constant in Purely Affine Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, that has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the metric Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric tensor is not well-defined. This feature indicates that, for the Ferraris-Kijowski model to be physical, there must exist a background field that depends on the Ricci tensor. The simplest possibility, supported by recent astronomical observations, is the cosmological constant, generated in the purely affine formulation of gravity by the Eddington Lagrangian. In this paper we combine the electromagnetic field and the cosmological constant in the purely affine formulation. We show that the sum of the two affine (Eddington and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of the analogous (ΛCDM and Einstein-Maxwell) Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid, like the affine Einstein-Born-Infeld formulation, only for weak electromagnetic fields, on the order of the magnetic field in outer space of the Solar System. Therefore the purely affine formulation that combines gravity, electromagnetism and cosmological constant cannot be a simple sum of affine terms corresponding separately to these fields. A quite complicated form of the affine equivalent of the metric Einstein-Maxwell-Λ Lagrangian suggests that Nature can be described by a simpler affine Lagrangian, leading to modifications of the Einstein-Maxwell-ΛCDM theory for electromagnetic fields that contribute to the spacetime curvature on the same order as the cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. (Berlin), p. 137 (1923)

  2. Eddington, A.S.: The Mathematical Theory of Relativity. Cambridge (1924)

  3. Schrödinger, E.: Space-Time Structure. Cambridge (1950)

  4. Kijowski, J.: Gen. Relativ. Gravit. 9, 857 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Catto, D., Francaviglia, M., Kijowski, J.: Bull. Acad. Pol. Sci. 28, 179 (1980)

    MathSciNet  Google Scholar 

  6. Palatini, A.: Rend. Circ. Mat. (Palermo) 43, 203 (1919)

    Article  MATH  Google Scholar 

  7. Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. (Berlin), p. 414 (1925)

  8. Ferraris, M., Francaviglia, M., Reina, C.: Gen. Relativ. Gravit. 14, 243 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. (Berlin), p. 844 (1915)

  10. Hilbert, D.: Königl. Gesell. Wiss., Göttingen Nachr., p. 395 (1915)

  11. Lorentz, H.A.: Koninkl. Akad. Wetensch. (Amsterdam) 24, 1389, 1759 (1916)

    Google Scholar 

  12. Lorentz, H.A.: Koninkl. Akad. Wetensch. (Amsterdam) 25, 468, 1380 (1916)

    Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1975)

    Google Scholar 

  14. Ferraris, M., Kijowski, J.: Gen. Relativ. Gravit. 14, 165 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Ferraris, M., Kijowski, J.: Rend. Sem. Mat. Univ. Polit. (Torino) 41, 169 (1983)

    MATH  MathSciNet  Google Scholar 

  16. Kijowski, J., Werpachowski, R.: Rep. Math. Phys. 59, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ferraris, M., Kijowski, J.: Lett. Math. Phys. 5, 127 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kijowski, J., Pawlik, B., Tulczyjew, W.M.: Bull. Acad. Pol. Sci. 27, 163 (1979)

    MathSciNet  Google Scholar 

  19. Kijowski, J., Magli, G.: Class. Quantum Gravity 15, 3891 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Jakubiec, A., Kijowski, J.: J. Math. Phys. 30, 1073 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Jakubiec, A., Kijowski, J.: J. Math. Phys. 30, 1077 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Einstein, A.: Ann. Phys. (Leipzig) 49, 769 (1916)

    ADS  Google Scholar 

  23. Weyl, H.: Space, Time, Matter. Methuen (1922)

  24. Schrödinger, E.: Proc. R. Ir. Acad. A 51, 163 (1947)

    Google Scholar 

  25. Einstein, A., Straus, E.G.: Ann. Math. 47, 731 (1946)

    Article  MathSciNet  Google Scholar 

  26. Band, W.: Phys. Rev. 36, 1405 (1930)

    Article  ADS  Google Scholar 

  27. Eisenhart, L.P.: Proc. Natl. Acad. Sci. USA 42, 249 (1956)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Goenner, H.F.M.: Liv. Rev. Relativ. 7, 2 (2004)

    ADS  MathSciNet  Google Scholar 

  29. Martellini, M.: Phys. Rev. Lett. 51, 152 (1983)

    Article  ADS  Google Scholar 

  30. Martellini, M.: Phys. Rev. D 29, 2746 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ferraris, M., Kijowski, J.: Gen. Relativ. Gravit. 14, 37 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Chruściel, P.T.: Ann. Inst. Henri Poincarè 42, 329 (1985)

    MATH  Google Scholar 

  33. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge (1992)

  34. Popławski, N.J.: J. Math. Phys. 47, 072501 (2006). arXiv:gr-qc/0503066

    Article  ADS  MathSciNet  Google Scholar 

  35. Riess, A.G., : Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  36. Perlmutter, S., : Astrophys. J. 517, 565 (1999)

    Article  Google Scholar 

  37. Spergel, D.N., : Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  38. Born, M., Infeld, L.: Proc. R. Soc. 144, 425 (1934)

    Article  MATH  ADS  Google Scholar 

  39. Motz, L.: Phys. Rev. 89, 60 (1953)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Vollick, D.N.: Phys. Rev. D 72, 084026 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ferraris, M., Kijowski, J.: In: Kowalski, O. (ed.) Proceedings of Conference on Differential Geometry and its Applications, p. 167. Univerzita Karlova, Praha (1982)

    Google Scholar 

  42. Popławski, N.J., Phys, Mod.: Lett. A 22, 2701 (2007). arXiv:gr-qc/0610132

    MATH  Google Scholar 

  43. Schouten, J.A.: Ricci-Calculus. Springer, New York (1954)

    MATH  Google Scholar 

  44. Kurşunoğlu, B.: Phys. Rev. 88, 1369 (1952)

    Article  MATH  ADS  Google Scholar 

  45. Hély, J.: C. R. Acad. Sci. (Paris) 239, 385 (1954)

    MATH  MathSciNet  Google Scholar 

  46. Johnson, C.R.: Phys. Rev. D 31, 1236 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  47. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  48. Hehl, F.W., Kerlick, G.D.: Gen. Relativ. Gravit. 9, 691 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Hehl, F.W., Lord, E.A., Smalley, L.L.: Gen. Relativ. Gravit. 13, 1037 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sandberg, V.D.: Phys. Rev. D 12, 3013 (1975)

    Article  Google Scholar 

  51. Ponomarev, V.N., Obukhov, Yu.N.: Gen. Relativ. Gravit. 14, 309 (1982)

    Article  ADS  Google Scholar 

  52. Popławski, N.J.: arXiv:0705.0351

  53. Popławski, N.J.: Int. J. Mod. Phys. A 23, 567 (2008). arXiv:gr-qc/0702129

    Article  MATH  ADS  Google Scholar 

  54. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  55. Popławski, N.J.: Int. J. Mod. Phys. A 23, 1891 (2008). arXiv:0706.4474

    Article  MATH  ADS  Google Scholar 

  56. Olmo, G.J.: Phys. Rev. Lett. 95, 261102 (2005)

    Article  ADS  Google Scholar 

  57. Puntigam, R.A., Lämmerzahl, C., Hehl, F.W.: Class. Quantum Gravity 14, 1347 (1997)

    Article  MATH  ADS  Google Scholar 

  58. Hlavatý, V.: J. Ration. Mech. Anal. 3, 103 (1954)

    Google Scholar 

  59. Coley, A.: Gen. Relativ. Gravit. 16, 459 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  60. Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Phys. Rev. Lett. 81, 2858 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikodem J. Popławski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popławski, N.J. Gravitation, Electromagnetism and Cosmological Constant in Purely Affine Gravity. Found Phys 39, 307–330 (2009). https://doi.org/10.1007/s10701-009-9284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9284-y

Keywords

Navigation