Skip to main content
Log in

Quantum Interference in Time

  • Published:
Foundations of Physics Aims and scope Submit manuscript

I discuss the interpretation of a recent experiment showing quantum interference in time. It is pointed out that the standard nonrelativistic quantum theory does not have the property of coherence in time, and hence cannot account for the results found. Therefore, this experiment has fundamental importance beyond the technical advances it represents. Some theoretical structures which consider the time as an observable, and thus could, in principle, have the required coherence in time, are discussed briefly, and the application of Floquet theory and the manifestly covariant quantum theory of Stueckelberg are treated in some detail. In particular, the latter is shown to account for the results in a simple and consistent way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • F. Lindner, M. G. Schätzel, H. Walther, A. Baltuska, E. Goulielmakis, F. Krausz, D. B. Milošević, D. Bauer, W. Becker, and G. G. Paulus, quant-ph/0503165, Phys. Rev. Lett. 95, 040401 (2005). See also, P. Szriftgiser, D. Guéry-Odelin, M. Arndt, and J. Dalibard, Phys. Rev. Lett. 77, 0031–9007 (1996); M. Wollenhaupt, A. Assion, D. Liese, Ch. Sarpe-Tudoran, T. Baumert, S. Zamith, M. A. Bouchene, B. Girard, A. Flettner, U. Weichmann, and G. Gerber, Phys. Rev. Lett. 89, 0031–9007 (2002).

  • P. A. M. Dirac, Quantum Mechanics, 1st edn. (Oxford University Press, London, 1930), pp. 34–36; Lectures on Quantum Field Theory (Academic, New York, 1966). See also W. Pauli, General Principles of Quantum Mechanics, (Springer, Heidelberg, 1980), p. 63; E. Schrödinger Berl. Ber. 238 (1931); P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968), and references therein.

  • G. Ludwig, Foundations of Quantum Mechanics I (Springer, New York, 1983), p. 295.

  • C. P. Piron, Foundations of Quantum Physics, W. A. Benjamin, ed. (Addison-Wesley Reading, MA, 1976). See also, C. Piron, physics/0204083 29 Apr. 2002; in Trends in Quantum Mechanics, H.-D. Doebner et al., eds. (World Scientific, Singapore, 2000), p. 270.

  • J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1968).

  • G. C. Wick, A. S. Wightman, and E. Wigner, Phys. Rev. 88, 101 (1952). See also C. Piron, Helv. Phys. Acta 42, 330 (1969).

  • Moshinsky M. (1952). Phys. Rev. 88:625

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Salières P., Carré B., Le Déroff L., Grasbon F., Paulus G.G., Walther H., Kopold R., Becker W., Milosevic D.B., Sanpera A., Lewenstein M. (2001). Science 292:902

    Article  ADS  Google Scholar 

  • For example, H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Symmetry (Springer, New York, 1987), p. 146; see also, R. M. Potvliege and R. Shakeshaft, Atoms in Intense Laser Fields, M. Gavrilla, ed. (Academic, San Diego, 1992); S. I. Chu, Adv. Chem. Phys. 73, 739 (1989). Note that the definition of \(H-i\hbar\partial_t\) as a self-adjoint operator is sufficient to define the structure of the Hilbert space and imply Eq. (5).

  • Hahne G.E. (2003). J. Phys. A 367:144

    MathSciNet  Google Scholar 

  • Y. Strauss, L. P. Horwitz, and E. Eisenberg, J. Math. Phys. 41 8050(2000), Fermilab-Pub-97/227-T. The original form of the the theory, intended for application to classical wave equations such as for optical or acoustic waves, is worked out in the book Scattering Theory, P. D. Lax and R. S. Phillips (Academic, New York, 1967). See also, L. P. Horwitz and C. Piron, Helv. Phys. Acta 66, 693 (1993).

  • F. Rohrlich, Phys. Rev. D 23, 1305 (1980), and references therein to earlier work.

  • E. C. G. Stueckelberg, Helv. Phys. Acta 14, 372 585 (1941); 15, 23 (1942); see also, L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973); Proceedings of the Workshop on Constraints Theory and Relativistic Dynamics (Arcetri, Firenze, Italy, 1986); G. Longhi and L. Lusanna, ed. (World Scientific, Singapore, 1987); L. P. Horwitz and F. Rohrlich, Phys. Rev. D 24, 1528 (1984); K. Sundermeyer, Constraint Dynamics (Lecture Notes in Physics 169, Springer, Berlin, 1982).

  • J. Muga, R. Sala Mayato, and I. L. Egusquiza, ed., Time in Quantum Mechanics (Lecture Notes in Physics, Springer, Berlin, 2002).

  • Howland J.S. (1979). Indiana Math. J. 28:471

    Article  MATH  MathSciNet  Google Scholar 

  • K. C. Kulander and M. Lewenstein, in Atomic, Molecular and Optical Physics Handbook, G. W. Drake, ed. (American Institute of Physics Press, Woodbury, NY, 1996), p. 828.

  • Horwitz L.P., Rabin Y. (1976). Lett. Nuovo Cimento 17:501

    Google Scholar 

  • L. P. Horwitz, W. C. Schieve, and C. Piron, Ann. Phys. 137, 306 (1981); L. P. Horwitz and F. Rotbart, Phys. Rev. D 24, 2127 (1981).

  • Horwitz L. (2006). Phys. Lett. A 355:1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Horwitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horwitz, L.P. Quantum Interference in Time. Found Phys 37, 734–746 (2007). https://doi.org/10.1007/s10701-007-9127-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9127-7

Keywords

Navigation