Skip to main content
Log in

New Insights into Uniformly Accelerated Detector in a Quantum Field

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We obtained an exact solution for a uniformly accelerated Unruh–DeWitt detector interacting with a massless scalar field in (3 + 1) dimensions which enables us to study the entire evolution of the total system, from the initial transient to late-time steady state. We find that the conventional transition probability of the detector from its initial ground state to excited states, as derived from time-dependent perturbation theory over an infinitely long duration of interaction, is valid only in the transient stage and is invalid for cases with proper acceleration smaller than the damping constant. We also found that, unlike in (1 + 1)D results, the (3 + 1)D uniformly accelerated Unruh– DeWitt detector in a steady state does emit a positive radiated power of quantum nature at late-times, but it is not connected to the thermal radiance experienced by the detector in the Unruh effect proper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Unruh W.G. (1976). “Notes on black-hole evaporation”. Phys. Rev. D 14: 870

    Article  ADS  Google Scholar 

  2. B. S. DeWitt, in General Relativity: an Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).

  3. Birrell N.D., Davies P.C.W. (1982) Quantum Fields in Curved Space. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Lin S.-Y., Hu B.L. (2006). “Accelerated detector – quantum field correlations: From vacuum fluctuations to radiation flux”. Phys. Rev. D 73: 124018

    Article  ADS  Google Scholar 

  5. S.-Y. Lin and B. L. Hu, “Where is the Unruh effect? – New insights from exact solutions of uniformly accelerated detectors”, gr-qc/0611062.

  6. Johnson P.R., Hu B.L. (2002). “Stochastic theory of relativistic particles moving in a quantum field: Scalar Abraham-Lorentz-Dirac-Langevin equation, radiation reaction, and vacuum fluctuations”. Phys. Rev. D 65: 065015

    Article  ADS  Google Scholar 

  7. Johnson P.R., Hu B.L. (2005). “Uniformly accelerated charge in a quantum field: From radiation reaction to Unruh effect”. Found. Phys. 35: 1117

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Hu B.L., Paz J.P., Zhang Y. (1992). “Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise”. Phys. Rev. D 45: 2843

    Article  ADS  MathSciNet  Google Scholar 

  9. B. F. Svaiter and N. F. Svaiter, “Inertial and noninertial particle detectors and vacuum fluctuations”, Phys. Rev. D 46, 5267 (1992); 47, 4802 (1993).

    Google Scholar 

  10. Higuchi A., Matsas G.E.A., Peres C.B. (1993). “Uniformly accelerated finite-time detectors”. Phys. Rev. D 48: 3731

    Article  ADS  Google Scholar 

  11. Jackson J.D. (1983) Classical Electrodynamics. Wiley, New York

    Google Scholar 

  12. Rohrlich F. (1965) Classical Charged Particles. Addison-Wesley, Redwood

    MATH  Google Scholar 

  13. Boulware D.G. (1980). “Radiation from a uniformly accelerated charge”. Ann. Phys. (N.Y.) 124: 169

    Article  ADS  Google Scholar 

  14. Chen P., Tajima T. (1999). “Testing Unruh radiation with ultraintense lasers”. Phys. Rev. Lett. 83: 256

    Article  ADS  Google Scholar 

  15. Chen P. eds. (2001) Quantum Aspects of Beam Physics, 18th Advanced IFCA Beam Dynamics Workshop. World Scientific, Singapore

    Google Scholar 

  16. J. M. Leinaas, in Quantum Aspects of Beam Physics, 18th Advanced IFCA Beam Dynamics Workshop, P. Chen, ed. (World Scientific, Singapore, 2001).

  17. B. L. Hu and A. Raval, in Quantum Aspects of Beam Physics, 18th Advanced IFCA Beam Dynamics Workshop, P. Chen, ed. (World Scientific, Singapore, 2001), quant-ph/0012135.

  18. B. L. Hu and P. R. Johnson, in Quantum Aspects of Beam Physics, 18th Advanced IFCA Beam Dynamics Workshop, P. Chen, ed. (World Scientific, Singapore, 2001), quant-ph/0012132.

  19. Grove P.G. (1986). “On an inertial observer’s interpretation of the detection of radiation by linearly accelerated particle detectors”. Class. Quan. Grav. 3: 801

    Article  ADS  MathSciNet  Google Scholar 

  20. Raine D.J., Sciama D.W., Grove P.G. (1991). “Does a uniformly accelerated quantum oscillator radiate?”. Proc. Roy. Soc. Lond. A 435: 205

    Article  MATH  ADS  Google Scholar 

  21. Unruh W.G. (1992). “Thermal bath and decoherence of Rindler spacetime”. Phys. Rev. D 46: 3271

    Article  ADS  MathSciNet  Google Scholar 

  22. Massar S., Parentani R., Brout R. (1993). “On the problem of the uniformly accelerated oscillator”. Class. Quant. Grav. 10: 385

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Yuin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SY., Hu, B.L. New Insights into Uniformly Accelerated Detector in a Quantum Field. Found Phys 37, 480–490 (2007). https://doi.org/10.1007/s10701-007-9120-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9120-1

Keywords

Navigation