Skip to main content
Log in

Communication Complexity as a Principle of Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We introduce a two-party communication complexity problem in which the probability of success by using a particular strategy allows the parties to detect with certainty whether or not some forbidden communication has taken place. We show that theprobability of success is bounded by nature; any conceivable method which gives a probability of success outside these bounds is impossible. Moreover, any conceivable method to solve the problem which gives a probability success within these bounds is possible in nature. This example suggests that a suitaby chosen set of communication complexity problems could be the basis of an information-theoretic axiomatization of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuchs C.A., in Decoherence and its Implications in Quantum Computation and Information Transfer, Gonis A., and P. E. A. Turchi, eds. (IOS Press, Amsterdam, 2001).

  2. Fuchs C.A., in Quantum Theory: Reconsideration of Foundations, Khrennikov A., ed. (Växjö University Press, Växjö, 2002).

  3. Fuchs C.A. (2003). Notes on a Paulian Idea Fundational, Historical, Anecdotal and Forward-looking Thoughts on the Quantum. Selected Correspondence, 1995–2001. Växjö University Press, Växjö

    Google Scholar 

  4. Fuchs C.A. (2003). J. Mod. Opt. 50: 987

    Article  MATH  ADS  Google Scholar 

  5. Wheeler J.A., in Complexity, Entropy, and the Physics of Information, Zurek W.H., ed. (Addison-Wesley, Redwood City, California, 1990), p. 1.

  6. Wheeler J.A., in Quantum Coherence and Reality, Anandan J., and Safko J.L., eds. (World Scientific, Singapore, 1995).

  7. Wheeler J.A., and Ford K.W. (1998). Geons, Black Holes, and Quantum Foam. Norton W.W., New York

    MATH  Google Scholar 

  8. Zeilinger A. (1999). Found. Phys 29:631

    Article  MathSciNet  Google Scholar 

  9. Fuchs C.A., Fortschr. Phys. 46, 535 (1998). Reprinted in Quantum Computation: Where Do We Want To Go Tomorrow?, S.L. Braunstein ed. (Wiley-VCH, Weinheim, 1999), p. 229.

  10. Fuchs C.A., in Quantum Communication, Computing, and Measurement, Kumar P., G. M. D’Ariano, and O. Hirota eds. (Kluwer, Dordrecht, 2000), p. 1.

  11. Fuchs C.A., and Jacobs K. (2001). Phys. Rev. A 63:062305

    Article  ADS  Google Scholar 

  12. Brassard G., Comments during discussion at meeting “Quantum Foundations in the Light of Quantum Information and Cryptography,” Montreal, May 17–19, 2000.

  13. Bennett C.H., and Brassard G. (1984). Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984). IEEE, New York, p. 175

    Google Scholar 

  14. Lo H.-K., Chau H.F. (1999). Science 283:2050

    Article  PubMed  ADS  Google Scholar 

  15. Brassard G., and C. Crépeau, in Advances in Cryptology: Proccedings of Crypto’90 (Springer-Verlag, Berlin, 1991) p. 49.

  16. Mayers D. (1997). Phys. Rev. Lett. 78:3414

    Article  ADS  Google Scholar 

  17. Lo H.-K., Chau H.F. (1997). Phys. Rev. Lett 78:3410

    Article  ADS  Google Scholar 

  18. Clifton R., Bub J., and Halvorson H. (2003). Found. Phys 33:1561

    Article  MathSciNet  Google Scholar 

  19. Smolin J.A. (2005). Quant. Inf. Comp. 5:161

    MathSciNet  MATH  Google Scholar 

  20. Spekkens R.W., unpublished, reported in Ref. 19.

  21. Halvorson H., and Bub J. (2005). Quant. Inf. Comp. 5:170

    MathSciNet  MATH  Google Scholar 

  22. Bell J.S. (1964). Physics 1:195

    Google Scholar 

  23. Einstein A., Podolsky B., and Rosen N. (1935). Phys. Rev. 47:777

    Article  MATH  ADS  Google Scholar 

  24. Bohm D. (1951). Quantum Theory. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  25. Clauser J.F., Horne M.A., Shimony A., and Holt R.A. (1969). Phys. Rev. Lett. 23:880

    Article  ADS  Google Scholar 

  26. Froissart M. (1981). Nuovo Cimento Soc. Ital. Fis. 64B:241

    Article  ADS  MathSciNet  Google Scholar 

  27. Fine A. (1982). Phys. Rev. Lett. 48:291

    Article  ADS  MathSciNet  Google Scholar 

  28. Fine A. (1982). J. Math. Phys. 23:1306

    Article  ADS  MathSciNet  Google Scholar 

  29. Popescu S., and Rohrlich D. (1994). Found Phys 24:379

    Article  ADS  MathSciNet  Google Scholar 

  30. Cleve R., and Buhrman H. (1997). Phys. Rev. A 56:1201

    Article  ADS  Google Scholar 

  31. Buhrman H., Cleve R., and Wigderson A., in Proceedings of the 30th Annual ACM Symposium on the Theory of Computing (ACM Press, New York, 1998), p. 63.

  32. Buhrman H., van Dam W., Høyer P., Tapp A. (1999). Phys. Rev. A 60:2737

    Article  ADS  Google Scholar 

  33. Raz R., in Proceedings of the 31st Annual ACM Symposium on the Theory of Computing (ACM Press, New York, 1999), p. 358.

  34. Steane A.M., and van Dam W. (2000). Phys. Today 53(2):35

    Article  Google Scholar 

  35. Buhrman H., Cleve R., and van Dam W. (2001). SIAM J. Comput 30:1829

    Article  MATH  MathSciNet  Google Scholar 

  36. Brassard G., Broadbent A., and Tapp A., in Algorithms and Data Structures: Proceedings of 8th International Workshop, WADS 2003, Lecture Notes in Computer Science 2748, Denne F., Sack J.R., and Smid M., eds. (Springer, New York, 2003), P.1.

  37. Brassard G. (2003). Found. Phys 33:1593

    Article  MathSciNet  Google Scholar 

  38. Brassard G., Broadbent A., and Tapp A. (2005). Found. Phys 35:1877

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Brassard G., Broadbent A., and Tapp A. (2005). Quant. Inf. Comp. 5:538

    MATH  Google Scholar 

  40. Brassard G., Méthot A.A., Tapp A. (2005). Quant. Inf. Comp 5:275

    MATH  Google Scholar 

  41. Mermin N.D. (1990). Phys. Today 43(6):9

    Article  Google Scholar 

  42. Mermin N.D. (1990). Am. J. Phys 58:731

    Article  ADS  MathSciNet  Google Scholar 

  43. Mermin N.D. (1990). Phys. Rev. Lett. 65:3373

    Article  PubMed  MATH  ADS  MathSciNet  Google Scholar 

  44. Greenberger D.M., Horne M.A., and Zeilinger A., in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos ed. (Kluwer Academic, Dordrecht, 1989), p. 69.

  45. Greenberger D.M., Horne M.A., Shimony A., and Zeilinger A. (1990). Am. J. Phys 58:1131

    Article  ADS  MathSciNet  Google Scholar 

  46. Cabello A. (2001). Phys. Rev. Lett. 86:1911

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  47. Cabello A. (2001). Phys. Rev. Lett. 87:010403

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  48. Aravind P.K. (2002). Found. Phys. Lett. 15:397

    Article  MathSciNet  Google Scholar 

  49. Aravind P.K. (2004). Am. J. Phys. 72:1303

    Article  ADS  MathSciNet  Google Scholar 

  50. Vaidman L. (2001). Phys. Lett. A 286:241

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Brukner Č., Żukowski M., Pan J.W., Zeilinger A. (2004). Phys. Rev. Lett 92:127901

    Article  PubMed  ADS  MathSciNet  Google Scholar 

  52. Tsirelson B.S., Zapiski LOMI 142, 174 (1985); English version: J. Soviet Math. 36, 557 (1987).

  53. Landau L.J. (1988). Found. Phys 18:449

    Article  ADS  MathSciNet  Google Scholar 

  54. Tsirelson B.S. (1993). Hadronic. J. Suppl 8:329

    MathSciNet  MATH  Google Scholar 

  55. Tsirelson B.S. (1980). Lett Math Phys 4:93

    Article  ADS  MathSciNet  Google Scholar 

  56. Khalfin L.A., and Tsirelson B.S., in Symposium on the Foundations of Modern Physics: 50 Years of the Einstein-Podolsky-Rosen Experiment, Lahti P., and Mittelstaedt P., eds. (World Scientific, Singapore, 1985), p. 441.

  57. Landau L.J. (1987). Phys. Lett. A 120:54

    Article  ADS  MathSciNet  Google Scholar 

  58. Khalfin L.A., and Tsirelson B.S. (1992). Found. Phys 22:879

    Article  ADS  MathSciNet  Google Scholar 

  59. Mermin N.D. (1981). Am. J. Phys 49:940

    Article  ADS  Google Scholar 

  60. Barrett J., Linden N., Massar S., Pironio S., Popescu S., and Roberts D. (2005). Phys. Rev. A 71:022101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adán Cabello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabello, A. Communication Complexity as a Principle of Quantum Mechanics. Found Phys 36, 512–525 (2006). https://doi.org/10.1007/s10701-005-9029-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9029-5

Keywords

PACS

Navigation