Skip to main content
Log in

Complementarity in Classical Dynamical Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an ad hoc partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler R.L., Weiss B. (1967). “Entropy, a complete metric invariant for automorphisms of the torus”. Proc. Natl. Acad. Sci. U.S.A. 57, 1573–1576

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alanson T. (1992). “A ‘quantal’ Hilbert space formulation for nonlinear dynamical systems in terms of probability amplitudes”. Phys. Lett. A 163, 41–43

    Article  ADS  MathSciNet  Google Scholar 

  3. Alicki R., Andries J., Fannes M., Tuyls P. (1996). “An algebraic approach to the Kolmogorov-Sinai entropy”. Rev. Math. Phys. 8(2): 167–184

    Article  MathSciNet  MATH  Google Scholar 

  4. A. E. Allahverdyan, A. Khrennikov, and Th. M. Nieuwenhuizen, “Brownian entanglement,” manuscript, arXiv: quant-ph/0412132. Phys. Rev. A, in press.

  5. Antoniou I., Tasaki S. (1993). “Generalized spectral decomposition of mixing dynamical systems”. Int. J. Quant. Chem. 46, 425–474

    Article  Google Scholar 

  6. H. Atmanspacher and H. Primas, “Epistemic and ontic quantum realities,” in Time, Quantum, and Information, L. Castell and O. Ischebeck, eds. (Springer, Berlin, 2003), pp. 301–321.

  7. Atmanspacher H., Römer H., Walach H. (2002). “Weak quantum theory: Complementarity and entanglement in physics and beyond”. Found. Phys. 32, 379–406

    Article  MathSciNet  Google Scholar 

  8. Atmanspacher H., Scheingraber H. (1987). “A fundamental link between system theory and statistical mechanics”. Found. Phys. 17, 939–963

    Article  ADS  MathSciNet  Google Scholar 

  9. beim Graben P. (2004). “Incompatible implementations of physical symbol systems”. Mind Matter 2(2): 29–51

    Google Scholar 

  10. beim Graben P., Saddy J.D., Schlesewsky M., Kurths J. (2000). “Symbolic dynamics of event–related brain potentials”. Phys. Rev. E 62, 5518–5541

    Article  ADS  MathSciNet  Google Scholar 

  11. Bohr N. (1932). “Chemistry and the quantum theory of atomic constitution”. J. Chem. Soc. 134, 349–384

    Article  Google Scholar 

  12. Bollt E.M., Stanford T., Lai Y.-C., Życzkowski K. (2000). “Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series”. Phys. Rev. Lett. 85, 3524–3527

    Article  PubMed  ADS  Google Scholar 

  13. Bollt E.M., Stanford T., Lai Y.-C., Życzkowski K. (2001). “What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series”. Physica D 154, 259–286

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Christiansen F., Politi A. (1995). “Generating partition of the standard map”. Phys. Rev. E 51, 3811–3814

    Article  ADS  Google Scholar 

  15. Crutchfield J.P., Packard N.H. (1983). “Symbolic dynamics of noisy chaos”. Physica D 7, 201–223

    Article  ADS  MathSciNet  Google Scholar 

  16. Davidchack R.L., Lai Y.-C., Bollt E.M., Dhamala M. (2000). “Estimating generating partitions of chaotic systems by unstable periodic orbits”. Phys. Rev. E 61, 1353–1356

    Article  ADS  Google Scholar 

  17. Daw C.S., Finney C.E.A., Tracy E.R. (2003). “A review of symbolic analysis of experimental data”. Rev. Sci. Instrum. 74, 915–930

    Article  ADS  Google Scholar 

  18. Emch G. (1964). “Coarse-graining in Liouville space and master equation”. Helv. Phys. Act. 37, 532–544

    MathSciNet  Google Scholar 

  19. Grassberger P., Kantz H. (1985). “Generating partitions for the dissipative Henon map”. Phys. Lett. A 113, 235–238

    Article  ADS  MathSciNet  Google Scholar 

  20. Gustafson K., Misra B. (1976). “Canonical commutation relations of quantum mechanics and stochastic regularity”. Lett. Math. Phys. 1, 275–280

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Haag R. (1992). Local Quantum Physics: Fields, Particles, Algebras Springer, Berlin

    MATH  Google Scholar 

  22. Israeli N., Goldenfeld N. (2004). “On computational irreducibility and the predictability of complex physical systems”. Phys. Rev. Lett. 92, 074105

    Article  PubMed  ADS  Google Scholar 

  23. Jauch J.M. (1964). “The problem of measurement in quantum mechanics”. Helv. Phys. Act. 37, 293–316

    MathSciNet  MATH  Google Scholar 

  24. Keller K., Wittfeld K. (2004). “Distances of time series components by means of symbolic dynamics”. Int. J. Bif. Chaos 14, 693–704

    Article  MathSciNet  MATH  Google Scholar 

  25. Kennel M.B., Buhl M. (2003). “Estimating good discrete partitions from observed data: Symbolic false nearest neighbors”. Phys. Rev. Lett. 91, 1–4

    Article  Google Scholar 

  26. Koopman B.O. (1931). “Hamiltonian sytems and transformations in Hilbert space”. Proc. Natl. Acad. Sci. U.S.A. 17, 315–318

    Article  ADS  Google Scholar 

  27. Koopman B.O., von Neumann J. (1932). “Dynamical systems of continuous spectra”. Proc. Natl. Acad. Sci. U.S.A. 18, 255–262

    Article  ADS  Google Scholar 

  28. Kowalski K. (1992). “Linearization transformations for non-linear dynamical systems: Hilbert space approach”. Physica A 180, 156–170

    Article  ADS  MathSciNet  Google Scholar 

  29. Lasota A., Mackey M.C. (1985). Probabilistic Properties of Deterministic Systems Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Lind D., Marcus B. (1995). An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  31. McMillan B. (1953). “The basic theorems of information theory”. Ann. Math. Statist. 24, 196–219

    Article  MathSciNet  MATH  Google Scholar 

  32. Misra B. (1967). “When can hidden variables be excluded in quantum mechanics?”. Il Nuovo Cimento 47, 841–859

    Article  MATH  Google Scholar 

  33. Misra B. (1978). “Nonequilibrium entropy, Lyapunov variables, and ergodic properties of classical systems”. Proc. Natl. Acad. Sci. U.S.A. 75, 1627–1631

    Article  ADS  Google Scholar 

  34. Primas H. (1977). “Theory reduction and non-Boolean theories”. J. Math. Biol. 4, 281–301

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  35. H. Primas, “Mathematical and philosophical questions in the theory of open and macroscopic quantum systems”. in Sixty-two Years of Uncertainty: Historical, Philosophical and Physics Inquries into the Foundation of Quantum Mechanics, A. I. Miller, ed. (Plenum, New York, 1990), pp. 233–257.

  36. Primas H. (1998). “Emergence in exact natural sciences”. Acta Polytech. Scand. Ma-91, 83–98

    MathSciNet  Google Scholar 

  37. Raggio G.A., Rieckers A. (1983). “Coherence and incompatibility in W*-algebraic quantum theory”. Int. J. Theor. Phys. 22, 267–291

    Article  MathSciNet  MATH  Google Scholar 

  38. Sakai S. (1971). C *-Algebras and W *-Algebras. Springer, Berlin

    Google Scholar 

  39. Shalizi C.R., Crutchfield J.P. (2001). “Computational mechanics: Pattern and prediction, structure and simplicity”. J. Stat. Phys. 104, 817–879

    Article  MathSciNet  MATH  Google Scholar 

  40. C. R. Shalizi and C. Moore, “What is a macrostate? Subjective observations and objective dynamics”. manuscript, arXiv: cond-mat/0303625.

  41. R. W. Spekkens, “In defense of the epistemic view of quantum states: A toy theory”. manuscript, arXiv: quant-ph/0401052.

  42. Steuer R., Molgedey L., Ebeling W., Jiménez-Montano M.E. (2001). “Entropy and optimal partition for data analysis”. Eur. Phys. J. B 19, 265–269

    Article  ADS  Google Scholar 

  43. Takesaki M. (1970). “Disjointness of the KMS-states of different temperatures”. Commun. Math. Phys. 17, 33–41

    Article  ADS  MathSciNet  Google Scholar 

  44. Tjøstheim D. (1976). “A commutation relation for wide sense stationary processes”. SIAM J. Appl. Math. 30, 115–122

    Article  MathSciNet  MATH  Google Scholar 

  45. Walters P. (1981). Introduction to Ergodic Theory. Springer, Berlin

    Google Scholar 

  46. Westmoreland M.D., Schumacher B.W. (1993). “Non-Boolean derived logics for classical systems”. Phys. Rev. A 48, 977–985

    Article  PubMed  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graben, P.b., Atmanspacher, H. Complementarity in Classical Dynamical Systems. Found Phys 36, 291–306 (2006). https://doi.org/10.1007/s10701-005-9013-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9013-0

Keywords

Navigation