Skip to main content
Log in

Extended Lifetime in Computational Evolution of Isolated Black Holes

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second-order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). The problem of the 3-d computational simulation of even a single isolated vacuum black hole has proven to be remarkably difficult. Recently, we have become aware of two publications that describe very long term evolution, at least for single isolated black holes. An essential feature in each of these results is constraint subtraction. Additionally, each of these approaches is based on what we call “modern,” hyperbolic formulations of the Einstein equations. It is generally assumed, based on computational experience, that the use of such modern formulations is essential for long-term black hole stability. We report here on comparable lifetime results based on the much simpler (“traditional”) \({\dot g} - {\dot K}\) formulation. With specific subtraction of constraints, with a simple analytic gauge, with very simple boundary conditions, and for moderately large domains with moderately fine resolution, we find computational evolutions of isolated non-spinning black holes for times exceeding 1000 GM/c2. We have also carried out a series of constrained 3-d evolutions of single isolated black holes. We find that constraint solution can produce substantially stabilized long-term single hole evolutions. However, we have found that for large domains, neither constraint-subtracted nor constrained \({\dot g} - {\dot K}\) evolutions carried out in Cartesian coordinates admit arbitrarily long-lived simulations. The failure appears to arise from features at the inner excision boundary; the behavior does generally improve with resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mark A. Scheel Lawrence E. Kidder Lee Lindblom Harald P. Pfeiffer Saul A. Teukolsky (2002) ArticleTitle“Toward stable 3D numerical evolutions of black-hole spacetimes” Phys. Rev. D 66 124005 Occurrence Handle10.1103/PhysRevD.66.124005 Occurrence Handle2003m:83078 Occurrence Handle2002PhRvD..66l4005S

    Article  MathSciNet  ADS  Google Scholar 

  2. Hwei-Jang Yo Thomas W. Baumgarte Stuart L. Shapiro (2002) ArticleTitle“Improved numerical stability of stationary black hole evolution calculations” Phys. Rev. D 66 084026 Occurrence Handle10.1103/PhysRevD.66.084026 Occurrence Handle2003k:83005 Occurrence Handle2002PhRvD..66h4026Y

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Arnowitt, S. Deser, and C. Misner in E. Witten, Gravitation, an Introduction to Current Research (Wiley, New York, 1962).

  4. S. Frittelli O. Reula (1996) ArticleTitle“First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge” Phys. Rev. Lett. 76 4667–4670 Occurrence Handle10.1103/PhysRevLett.76.4667 Occurrence Handle1996PhRvL..76.4667F

    Article  ADS  Google Scholar 

  5. R. Kerr and A. Schild, “Some algebraically degenerate solutions of Einstein’s gravitational field equations”, in Applications of Nonlinear Partial Differential Equations in Mathematical Physics, Proc. of Symposia B Applied Math. Vol XVII (1965); “A new class of solutions of the Einstein field equations”, Atti del Congresso Sulla Relitivita Generale: Problemi Dell’Energia E Onde Gravitazionala, G. Barbera, ed. (1965).

  6. A. Hindmarsh, R. Serban, and C. Woodward, “SUNDIALS home page”, http:// www.llnl.gov/CASC/sundials/ (2002).

  7. A. Hindmarsh and R. Serban, “User documentation for CVODES”, (Center for Applied Scientific Computer, Lawrence Livermore National Laboratory, 2002).

  8. A. Taylor and A. Hindmarsh, “User documentation for KINSOL, a nonlinear solver for sequential and parallel computers” (Center for Applied Scientific Computer, Lawrence Livermore National Laboratory, 1998).

  9. Gabriel Nagy, Omar E. Ortiz, and Oscar A. Reula “Strongly hyperbolic second–order Einstein’s evolution equations”, gr-qc/0402123 (2004).

  10. Mijan F. Huq Matthew W. Choptuik Richard A. Matzner (2002) ArticleTitle“Locating boosted Kerr and Schwarzschild apparent horizons” Phys. Rev. D 66 084024 Occurrence Handle10.1103/PhysRevD.66.084024 Occurrence Handle2003j:83022 Occurrence Handle2002PhRvD..66h4024H

    Article  MathSciNet  ADS  Google Scholar 

  11. J. York and T. Piran “The initial value problem and beyond”, in Spacetime and Geometry: The Alfred Schild Lectures, R. Matzner and L. Shepley, eds. (University of Texas Press, Austin, Texas, 1982); G. Cook, “Initial data for the two-body problem of general relativity,” Ph.D. Dissertation, The University of North Carolina at Chapel Hill (1990).

  12. N. Ó. Murchadha and J. W. York, Jr., Phys. Rev. D10, 428 (1974); N. Ó. Murchadha and J. W. York, Jr., Phys. Rev. D10, 437 (1974); N. Ó. Murchadha and J. W. York, Jr., Gen. Relativ. Gravit. 7, 257 (1976).

  13. J. W. York SuffixJr. (1999) Phys. Rev. Lett. 82 1350 Occurrence Handle10.1103/PhysRevLett.82.1350 Occurrence Handle0949.83011 Occurrence Handle2000a:83017 Occurrence Handle1999PhRvL..82.1350Y

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. J. R. Wilson and G. J. Mathews, Phys. Rev. Lett. 75, 4161 (1995); J. R. Wilson and G. J. Mathews, and P. Marronetti, Phys. Rev. D54, 1317 (1996)

  15. J. Bowen J. W. York (1980) Phys. Rev. D 21 2047 Occurrence Handle10.1103/PhysRevD.21.2047 Occurrence Handle1980PhRvD..21.2047B

    Article  ADS  Google Scholar 

  16. S. Bonazzola E. Gourgoulhon P. Grandclément J. Novak (2004) ArticleTitle“A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates” Phys. Rev. D 70 104007 Occurrence Handle10.1103/PhysRevD.70.104007 Occurrence Handle2122839 Occurrence Handle2004PhRvD..70j4007B

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc home page”, http://www.mcs.anl.gov/petsc (2001).

  18. S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual”, ANL-95/11 – Revision 2.1.5 (Argonne National Laboratory, 2002).

  19. S. Balay K. Buschelman W. D. Gropp D. Kaushik M. Knepley L. C. McInnes B. F. Smith H. Zhang (1997) “Efficient management of parallelism in object oriented numerical software libraries” E. Arge A. M. Bruaset H. P. Langtangen (Eds) Modern Software Tools in Scientific Computing. Birkhauser Boston 163–202

    Google Scholar 

  20. G. Toth (2002) ArticleTitle“The \({\nabla \cdot} {\bf B} = 0\) constraint in shock-capturing magnetohydrodynamics codes.” Jour. Comp. Phys. 161 605 Occurrence Handle2001a:76151 Occurrence Handle2000JCoPh.161..605T

    MathSciNet  ADS  Google Scholar 

  21. Michael Holst, Lee Lindblom, Robert Owen, Harald P. Pfeiffer, Mark A. Scheel, and Lawrence E. Kidder, “Optimal constraint projection for hyperbolic evolution systems”, gr-qc/0407011 (2004).

  22. M. Choptuik, Personal communication (2003).

  23. M. W. Choptuik E. W. Hirschmann S. L. Liebling F. Pretorius (2003) ArticleTitle“An axisymmetric gravitational collapse code” Class. Quant. Grav. 20 1857–1878 Occurrence Handle2004d:83003 Occurrence Handle2003CQGra..20.1857C

    MathSciNet  ADS  Google Scholar 

  24. Y. Choquet-Bruhat J. Isenberg J. W. York (2000) ArticleTitle“Phys” Rev. D 61 084034 Occurrence Handle2001f:83012

    MathSciNet  Google Scholar 

  25. Matthew Anderson, “Constrained evolution in numerical relativity”, Ph.D. dissertation, The University of Texas at Austin (2004).

  26. Gioel Calabrese Luis Lehner David Neilsen Jorge Pullin Oscar Reula Olivier Sarbach Manuel Tiglio (2003) ArticleTitle“Novel finite-differencing techniques for numerical relativity: application to black hole excision” Class. Quant. Grav. 20 L245–L252 Occurrence Handle2004m:83005 Occurrence Handle2003CQGra..20L.245C

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, M., Matzner, R.A. Extended Lifetime in Computational Evolution of Isolated Black Holes. Found Phys 35, 1477–1495 (2005). https://doi.org/10.1007/s10701-005-6477-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-6477-x

Keywords

Navigation