Skip to main content
Log in

Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

The current research concerns multiobjective linear programming problems with interval objective functions coefficients. It is known that the most credible solutions to these problems are necessarily efficient ones. To solve the problems, this paper attempts to propose a new model with interesting properties by considering the minimax regret criterion. The most important property of the new model is attaining a necessarily efficient solution as an optimal one whenever the set of necessarily efficient solutions is nonempty. In order to obtain an optimal solution of the new model, an algorithm is suggested. To show the performance of the proposed algorithm, numerical examples are given. Finally, some special cases are considered and their characteristic features are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Bitran, G. R. (1980). Linear multiple objective problems with interval coefficients. Management Science, 26, 694–706.

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, C., Huang, G., Cai, Y., & Xu, Y. (2011). An interval-parameter minimax regret programming approach for power management systems planning under uncertainty. Applied Energy, 88(8), 2835–2845.

    Article  Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Ehrgott, M., Puerto, J., & Rodríguez-Chía, A. (2007). Primal-dual simplex method for multiobjective linear programming. Journal of Optimization Theory, 134(3), 483–497.

    Article  MathSciNet  MATH  Google Scholar 

  • Goberna, M. A., & López, M. A. (2002). Linear semi-infinite programming theory: An updated survey. European Journal of Operational Research, 143(2), 390–405.

    Article  MathSciNet  MATH  Google Scholar 

  • Hladík, M. (2008). Computing the tolerances in multiobjective linear programming. Optimization Methods and Software, 23(5), 731–739.

    Article  MathSciNet  MATH  Google Scholar 

  • Hladík, M. (2010). On necessary efficient solutions in interval multiobjective linear programming. In C. H. Antunes, D. R. Insua, & L. C. Dias (Eds.), CD-ROM Proceedings of the 25th mini-EURO conference uncertainty and robustness in planning and decision making URPDM 2010, April 15–17 (pp. 1–10). Portugal: Coimbra.

  • Hladík, M. (2012). Complexity of necessary efficiency in interval linear programming and multiobjective linear programming. Optimization Letters, 6(5), 893–899.

    Article  MathSciNet  MATH  Google Scholar 

  • Hladík, M. (2012). Interval linear programming: A survey. In Z. A. Mann (Ed.), Linear programming—new frontiers in theory and applications (pp. 85–120). New York: Nova Science Publishers.

    Google Scholar 

  • Hladík, M. (2013). Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra and its Applications, 438(11), 4156–4165.

    Article  MathSciNet  MATH  Google Scholar 

  • Hladík, M. (2014). How to determine basis stability in interval linear programming. Optimization Letters, 8(1), 375–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi, M., & Kume, Y. (1991). Goal programming problems with interval coefficients and target intervals. European Journal of Operational Research, 52(3), 345–360.

    Article  MATH  Google Scholar 

  • Inuiguchi, M., & Sakawa, M. (1995). Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research, 86(3), 526–536.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi, M., & Sakawa, M. (1996). Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets and Systems, 78(2), 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 48(2), 219–225.

    Article  MATH  Google Scholar 

  • López, M., & Still, G. (2007). Semi-infinite programming. European Journal of Operational Research, 180(2), 491–518.

    Article  MathSciNet  MATH  Google Scholar 

  • Loulou, R., & Kanudia, A. (1999). Minimax regret strategies for greenhouse gas abatement: Methodology and application. Operations Research Letters, 25(5), 219–230.

    Article  MATH  Google Scholar 

  • Mausser, H. E., & Laguna, M. (1998). A new mixed integer formulation for the maximum regret problem. International Transactions in Operational Research, 5(5), 389–403.

    Article  Google Scholar 

  • Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval analysis. Philadelphia, PA: SIAM.

    Book  MATH  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2007). Multiple objective linear programming models with interval coefficients—an illustrated overview. European Journal of Operational Research, 181(3), 1434–1463.

    Article  MATH  Google Scholar 

  • Oliveira, C., & Antunes, C. H. (2009). An interactive method of tackling uncertainty in interval multiple objective linear programming. Journal of Mathematical Sciences, 161(6), 854–866.

    Article  MathSciNet  MATH  Google Scholar 

  • Rivaz, S., & Yaghoobi, M. (2013). Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients. Central European Journal of Operations Research, 21(3), 625–649.

    Article  MathSciNet  MATH  Google Scholar 

  • Urli, B., & Nadeau, R. (1992). An interactive method to multiobjective linear programming problems with interval coefficients. INFOR, 30(2), 127–137.

    MATH  Google Scholar 

  • Wu, H. C. (2009). The Karush–Kuhn–Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. European Journal of Operational Research, 196(1), 49–60.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Milan Hladík was supported by the Czech Science Foundation Grant P402-13-10660S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hladík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivaz, S., Yaghoobi, M.A. & Hladík, M. Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem. Fuzzy Optim Decis Making 15, 237–253 (2016). https://doi.org/10.1007/s10700-015-9226-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-015-9226-4

Keywords

Mathematics Subject Classification

Navigation