Skip to main content
Log in

Towards a Multi Target Quantum Computational Logic

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Unlike the standard Quantum Computational Logic (QCL), where the carrier of information (target) is conventionally assumed to be only the last qubit over a sequence of many qubits, here we propose an extended version of the QCL (we call Multi Target Quantum Computational Logic) where the number and the position of the target qubits are arbitrary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. As an example, the linear neighbor architectures LNN (Kumar 2013), offer an appropriate approximate method to approach to physical problems regarding trapped ions (Häffner et al. 2005), liquid nuclear magnetic resonance (Laforest et al. 2007) and the original Kane model (Kane 1998).

  2. It is easy to see that \(Swap_{[k;m,m+n-1]}^{-1}=Swap_{[k;m,m+n-1]}\) for any value of km and n.

  3. Let us give a slight abuse of the terms target and control remarking that, for example, if we refer to the picture of the Sect. 3, the qubit \(\vert {x_1} \rangle\) is not a control qubit but, accordingly with this notation, it assumes a control position over the quantum circuit where it is located.

  4. Notice that the probability \({\texttt {p}}\) we refer to is the one introduced in the context of the standard QCL (see Eq. 4.1). On this basis, we are using this example to express the MT-QCL probability \({\texttt {P}}\) in terms of the QCL probability \({\texttt {p}}\).

References

  • Beltrametti, E., Dalla Chiara, M. L., Giuntini, R., Leporini, R., & Sergioli, G. (2012). Epistemic quantum computational structures in a Hilbert-space environment. Fundamenta Informaticae, 115, 1–14.

    Article  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory: Sharp and unsharp quantum logic. Trends in logic. Berlin: Springer.

    Book  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., Leporini, R., Negri, E., & Sergioli, G. (2015). Quantum information, cognition and music. Frontiers in Psychology, 6, 1583.

    Article  Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., Leporini, R., & Sergioli, G. (2016). Holistic logical arguments in quantum computation. Mathematica Slovaca, 66(2), 313–334.

    Google Scholar 

  • Dalla Chiara, M. L., Giuntini, R., & Sergioli, G. (2013). Probability in quantum computationa and in quantum computational logic. Mathematical structures in computer science (Vol. 14). Cambridge: Cambridge University Press.

    Google Scholar 

  • Devitt, S. J. (2016). Performing quantum computing experiments in the cloud. Physical Review A. https://doi.org/10.1103/PhysRevA.94.032329.

    Article  Google Scholar 

  • Fowler, A. G., Hill, C. D., & Hollenberg, L. C. L. (2004). Quantum error correction on linear nearest neighbor qubit arrays. Physical Review A, 69, 042314.1–042314.4.

    Article  Google Scholar 

  • Fuchs, J. (1992). Affine Lie algebras and quantum groups. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gerdt, V. P., Kragler, R., & Prokopenya, A. N. (2009). A Mathematica program for constructing quantum circuits and computing their unitary matrices. Physics of Particles and Nuclei Letters, 6, 526.

    Article  Google Scholar 

  • Gerdt, V. P., & Prokopenya, A. N. (2011). The circuit model of quantum computation and its simulation with Mathematica. In Mathematical modelling and computer science, LNCS (pp. 43–55). Springer.

  • Häffner, H., Hänsel, W., Roos, C. F., Benhelm, J., Chek al kar, D., Chwalla, M., et al. (2005). Scalable multipartite entanglement of trapped ions. Nature, 438, 643–646.

    Article  Google Scholar 

  • Hirvensalo, M. (2001). Quantum computing. Natural computing series. Berlin: Springer.

    Google Scholar 

  • Holik, F, Sergioli, G., Freytes, H., & Plastino, A. (2018). Pattern recognition in non-Kolmogorovian structures. Foundations of Science, 23(1), 119–132.

    Article  Google Scholar 

  • Jozsa, R., & Miyake, A. (2008). Matchgates and classical simulation of quantum circuits. Proceedings of the Royal Society A, 464, 3089–3106.

    Article  Google Scholar 

  • Kane, B. (1998). A silicon-based nuclear spin quantum computer. Nature, 393, 133–137.

    Article  Google Scholar 

  • Kitaev, A. Y., Shen, A., & Vyalyi, M. N. (2002). Classical and quantum computation. Graduate studies in mathematics (Vol. 47). Rhode Island: AMS.

    Google Scholar 

  • Kumar, P. (2013). Efficient quantum computing between remote qubits in linear nearest neighbor architectures. Quantum Information Processing, 12–4, 1737–1757.

    Article  Google Scholar 

  • Laforest, M., Simon, D., Boileau, J. C., Baugh, J., Ditty, M., & Laflamme, R. (2007). Using error correction to determine the noise model. Physical Review A, 75, 133–137.

    Article  Google Scholar 

  • Ledda, A., & Sergioli, G. (2010). Towards quantum computational logics. International Journal of Theoretical Physics, 49, 3158–3165.

    Article  Google Scholar 

  • Linke, N. M., Maslov, D., Roetteler, M., Debnath, S., Figgatt, C., Landsman, K. A., et al. (2017). Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences of the United States of America, 114, 3305–3310.

    Article  Google Scholar 

  • Nielsen, M. A., & Chuang, I. (2000). Quantum computation and quantum information. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sergioli, G. (2017). Quantum circuit optimization for unitary operators over non-adjacent qudits. arXiv:1711.09765 [quant-ph]

  • Sergioli, G., & Freytes, H. (2017). Fuzzy approach to quantum Fredkin gate. Journal of Logic & Computation, 28(1), 245–263.

    Article  Google Scholar 

  • Sergioli, G., Giuntini, R., & Paoli, F. (2011). Irreversibility in quantum computational logics. Applied Mathematics and Information Sciences, 5(2), 171–191.

    Google Scholar 

  • Sergioli, G., Santucci, E., Didaci, L., Miszczak, J. A., & Giuntini, R. (2017). A quantum inspired version of the NMC classifier. Soft Computing, 22(3), 691–705.

    Article  Google Scholar 

  • Takahashi, Y., Kunihiro, N., & Ohta, K. (2007). The quantum Fourier transform on a linear nearest neighbor architecture. Quantum Information and Computation, 7, 383–391.

    Google Scholar 

  • Toffoli, T. (1980). Reversible computing. In Proceedings of the 7th colloquium on automata, languages and programming (pp. 632–644). London: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Regione Autonoma della Sardegna within the project “Time-logical evolution of correlated microscopic systems” CRP 55, L.R. 7/2007 (2015) and by Fondazione Sardegna within the project “Strategies and Technologies for Scientific Education and Dissemination” (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sergioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergioli, G. Towards a Multi Target Quantum Computational Logic. Found Sci 25, 87–104 (2020). https://doi.org/10.1007/s10699-018-9569-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-018-9569-8

Keywords

Navigation