Skip to main content

Advertisement

Log in

Forensic Science: Current State and Perspective by a Group of Early Career Researchers

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Forensic science and its influence on policing and the criminal justice system have increased since the beginning of the twentieth century. While the philosophies of the forensic science pioneers remain the pillar of modern practice, rapid advances in technology and the underpinning sciences have seen an explosion in the number of disciplines and tools. Consequently, the way in which we exploit and interpret the remnant of criminal activity are adapting to this changing environment. In order to best exploit the trace, an interdisciplinary approach to both research and investigation is required. In this paper, nine postdoctoral research fellows from a multidisciplinary team discuss their vision for the future of forensic science at the crime scene, in the laboratory and beyond. This paper does not pretend to be exhaustive of all fields of forensic science, but describes a portion of the postdoctoral fellows’ interests and skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Source: Taudte et al. (2013)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackermann, K., Ballantyne, K. N., & Kayser, M. (2010). Estimating trace deposition time with circadian biomarkers: A prospective and versatile tool for crime scene reconstruction. International Journal of Legal Medicine, 124(5), 387–395.

    Article  Google Scholar 

  • Adahchour, M., Beens, J., Vreuls, R., & Brinkman, U. (2006). Recent developments in comprehensive two-dimensional gas chromatography (GC×GC) III. Applications for petrochemicals and organohalogens. Trends in Analytical Chemistry, 25(7), 726–741.

    Article  Google Scholar 

  • Agapiou, A., Zorba, E., Mikedi, K., McGregor, L., Spiliopoulou, C., & Statheropoulos, M. (2015). Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption–comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. Analytica Chimica Acta, 883, 99–108.

    Article  Google Scholar 

  • Almirall, J. R., & Furton, K. G. (2004). Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris. Journal of Analytical and Applied Pyrolysis, 71(1), 51–67.

    Article  Google Scholar 

  • ASTM E1386-15. (2015). Standard practice for separation of ignitable liquid residues from fire debris samples by solvent extraction. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • ASTM E1388-12. (2012). Standard practice for sampling of headspace vapors from fire debris samples. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • ASTM E1412-16. (2016). Standard practice for separation of ignitable liquid residues from fire debris samples by passive headspace concentration with activated charcoal. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • ASTM E1413-13. (2013). Standard practice for separation of ignitable liquid residues from fire debris samples by dynamic headspace concentration. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • ASTM E1618-14. (2014). Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • ASTM E2154-15a. (2015). Standard practice for separation and concentration of ignitable liquid residues from fire debris samples by passive headspace concentration with solid phase microextraction (SPME). In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • ASTM E2881-13. (2013). Standard test method for extraction and derivatization of vegetable oils and fats from fire debris and liquid samples with analysis by gas chromatography-mass spectrometry. In Annual book of ASTM standards. West Conshohocken, PA: ASTM International.

  • Attard-Montalto, N., Ojeda, J. J., Reynolds, A., Ismail, M., Bailey, M., Doodkorte, L., et al. (2014). Determining the chronology of deposition of natural finger marks and inks on paper using secondary ion mass spectrometry. Analyst, 139, 4641–4653.

    Article  Google Scholar 

  • Baechler, S., Terrasse, V., Pujol, J.-P., Fritz, T., Ribaux, O., & Margot, P. (2013). The systematic profiling of false identity documents: Method validation and performance evaluation using seizures known to originate from common and different source. Forensic Science International, 232(1–3), 180–190.

    Article  Google Scholar 

  • Baerncopf, J., & Hutches, K. (2014). A review of modern challenges in fire debris analysis. Forensic Science International, 244, e12–e20.

    Article  Google Scholar 

  • Baskin, D., & Sommers, I. (2010). The influence of forensic evidence on the case outcomes of homicide incidents. Journal of Criminal Justice, 38(6), 1141–1149.

    Article  Google Scholar 

  • Beens, J., Blomberg, J., & Schoenmakers, P. J. (2000). Proper tuning of comprehensive two-dimensional gas chromatography (GC×GC) to optimize the separation of complex oil fractions. Journal of High Resolution Chromatography, 23(3), 182–188.

    Article  Google Scholar 

  • Bhoelai, B., de Jong, B. J., de Puit, M., & Sijen, T. (2011). Effect of common fingerprint detection techniques on subsequent STR profiling. Forensic Science International: Genetics Supplement Series, 3, e429–e430.

    Google Scholar 

  • Borsting, C., & Morling, N. (2015). Next generation sequencing and its applications in forensic genetics. Forensic Science International: Genetics Supplement Series, 18, 78–89.

    Article  Google Scholar 

  • Braasch, K., de la Hunty, M., Deppe, J., Spindler, X., Cantu, A. A., Maynard, P., et al. (2013). Nile red: Alternative to physical developer for the detection of latent finger marks on wet porous surfaces? Forensic Science International, 230(1–3), 74–80.

    Article  Google Scholar 

  • Brasseur, C., Dekeirsschieter, J., Schotsmans, E. M., de Koning, S., Wilson, A. S., Haubruge, E., et al. (2012). Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the forensic study of cadaveric volatile organic compounds released in soil by buried decaying pig carcasses. Journal of Chromatography A, 1255, 163–170.

    Article  Google Scholar 

  • Bright, N. J., Willson, T. R., Driscoll, D. J., Reddy, S. M., Webb, R. P., Bleay, S., et al. (2013). Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions. Forensic Science International, 230, 81–86.

    Article  Google Scholar 

  • Brodeur, J.-P. (2005). L’enquête criminelle. Criminologie, 38(2), 39–64.

    Article  Google Scholar 

  • Chadwick, S., Xiao, L., Maynard, P., Lennard, C., Spindler, X., & Roux, C. (2014). PolyCyano UV: An investigation into a one-step luminescent cyanoacrylate fuming process. Australian Journal of Forensic Sciences, 46(4), 471–484.

    Article  Google Scholar 

  • Chalmers, J. M., Edwards, H. G. M., & Hargreaves, M. D. (2012). Infrared and Raman spectroscopy in forensic science. Hoboken: Wiley.

    Book  Google Scholar 

  • Champod, C., Lennard, C., Margot, P., & Stoilovic, M. (2004). Fingerprints and other ridge skin impressions. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Choi, B. C. K. (2006). Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clinical and Investigative Medicine, 29(6), 351–364.

    Google Scholar 

  • Coyne, J. W., & Bell, P. (2011). The role of strategic intelligence in anticipating transnational organised crime: A literary review. International Journal of Law, Crime and Justice, 39(1), 60–78.

    Article  Google Scholar 

  • de la Hunty, M., Moret, S., Chadwick, S., Lennard, C., Spindler, X., & Roux, C. (2015). Understanding physical developer (PD): Part I—Is PD targeting lipids? Forensic Science International, 257, 481–487.

    Article  Google Scholar 

  • de la Hunty, M., Spindler, X., Chadwick, S., Lennard, C., & Roux, C. (2014). Synthesis and application of an aqueous nile red microemulsion for the development of finger marks on porous surfaces. Forensic Science International, 244, e48–e55.

    Article  Google Scholar 

  • Dekeirsschieter, J., Stefanuto, P. H., Brasseur, C., Haubruge, E., & Focant, J. F. (2012). Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS). PLoS One, 7(6), e39005.

    Article  Google Scholar 

  • Dilag, J., Kobus, H., & Ellis, A. V. (2009). Cadmium sulfide quantum dot/chitosan nanocomposites for latent fingermark detection. Forensic Science International, 187, 97–102.

    Article  Google Scholar 

  • Dilag, J., Kobus, H., & Ellis, A. V. (2013). CdS/polymer nanocomposites synthesized via surface initiated RAFT polymerization for the fluorescent detection of latent fingermarks. Forensic Science International, 228, 105–114.

    Article  Google Scholar 

  • Drapel, V., Bécue, A., Champod, C., & Margot, P. (2009). Identification of promising antigenic components in latent fingermark residues. Forensic Science International, 184, 47–53.

    Article  Google Scholar 

  • Eckenrode, B. A. (2001). Environmental and forensic applications of field-portable GC–MS: An overview. Journal of the American Society for Mass Spectrometry, 12, 683–693.

    Article  Google Scholar 

  • Elkin, K. R. (2014). Portable, fully autonomous, ion chromatography system for on-site analyses. Journal of Chromatography A, 1352, 38–45.

    Article  Google Scholar 

  • Epple, R., Blanes, L., Beavis, A., Roux, C., & Doble, P. (2010). Analysis of amphetamine type substances by capillary zone electrophoresis using capacitively coupled contactless conductivity detection. Electrophoresis, 31(15), 2608–2613.

    Article  Google Scholar 

  • Esseiva, P., Ioset, S., Anglada, F., Gasté, L., Ribaux, O., Margot, P., et al. (2007). Forensic drug intelligence: An important tool in law enforcement. Forensic Science International, 167(2–3), 247–254.

    Article  Google Scholar 

  • Farrugia, K. J., Deacon, P., & Fraser, J. (2014). Evaluation of Lumicyano™ cyanoacrylate fuming process for the development of latent fingermarks on plastic carrier bags by means of a pseudo operational comparative trial. Science & Justice, 54, 126–132.

    Article  Google Scholar 

  • Fierer, N., Lauber, C. L., Zhou, N., McDonald, D., Costello, E. K., & Knight, R. (2010). Forensic identification using skin bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6477–6481.

    Article  Google Scholar 

  • Fleming, R. I., & Harbison, S. (2010). The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Science International: Genetics Supplement Series, 4(4), 244–256.

    Article  Google Scholar 

  • Focant, J.-F., Stefanuto, P. H., Brasseur, C., Dekeirsschieter, J., Haubruge, E., Schotsmans, E. M., et al. (2013). Forensic cadaveric decomposition profiling by GC×GC–TOFMS analysis of VOCs. Chemical Bulletin of Kazakh National University, 4, 177–186.

    Article  Google Scholar 

  • Forbes, S. L., Perrault, K. A., Stefanuto, P. H., Nizio, K. D., & Focant, J. F. (2014). Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One, 9(11), e113681.

    Article  Google Scholar 

  • Fox, A., Gittos, M., Harbison, S. A., Fleming, R., & Wivell, R. (2014). Exploring the recovery and detection of messenger RNA and DNA from enhanced fingermarks in blood. Science & Justice, 54(3), 192–198.

    Article  Google Scholar 

  • Frysinger, G. S., & Gaines, R. B. (2002). Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. Journal of Forensic Sciences, 47, 471–482.

    Google Scholar 

  • Frysinger, G. S., Gaines, R. B., & Reddy, C. M. (2002). GC×GC—A new analytical tool for environmental forensics. Environmental Forensics, 3(1), 27–34.

    Google Scholar 

  • Fu, S., Luong, S., Pham, A., Charlton, N., & Kuzhiumparambil, U. (2014). Bioanalysis of urine samples after manipulation by oxidizing chemicals: Technical considerations. Bioanalysis, 6(11), 1543–1561.

    Article  Google Scholar 

  • Gaines, R. B., Frysinger, G. S., Hendrick-Smith, M. S., & Stuart, J. D. (1999). Oil spill source identification by comprehensive two-dimensional gas chromatography. Environmental Science and Technology, 33(12), 2106–2112.

    Article  Google Scholar 

  • Gaines, R. B., Frysinger, G. S., Reddy, C. M., & Nelson, R. K. (2007). Oil spill source identification by comprehensive two-dimensional gas chromatography (GCxGC). In Z. Wang & S. A. Stout (Eds.), Oil spill environmental forensics: Fingerprinting and source identification (pp. 169–206). Burlington, MA: Academic Press.

    Chapter  Google Scholar 

  • Girod, A., Ramotowski, R., & Weyermann, C. (2012). Composition of fingermark residue: A qualitative and quantitative review. Forensic Science International, 223, 10–24.

    Article  Google Scholar 

  • Grossrieder, L., Albertetti, F., Stoffel, K., & Ribaux, O. (2013). Des données aux connaissances, un chemin difficile: Réflexion sur la place du data mining en analyse criminelle. Revue Internationale de Criminologie et de Police Technique et Scientifique, LXVI(1), 99–116.

    Google Scholar 

  • Gunn, P., Walsh, S., & Roux, C. (2014). The nucleic acid revolution continues—Will forensic biology become forensic molecular biology? Frontiers in Genetics, 5, 44.

    Article  Google Scholar 

  • Guo, Y., Lu, M. Q., & Long, Y. T. (1997). Ion mobility spectra of selected amines and their application in field testing with the use of a portable IMS device. Field Analytical Chemistry and Technology., 1(4), 195–211.

    Article  Google Scholar 

  • Hahn, W., & Ramotowski, R. (2012). Evaluation of a novel one-step fluorescent cyanoacrylate fuming process for latent print visualization. Journal of Forensic Identification, 62(3), 279–298.

    Google Scholar 

  • Hazarika, P., Jickells, S. M., & Russell, D. A. (2009). Rapid detection of drug metabolites in latent fingermarks. Analyst, 134, 93–96.

    Article  Google Scholar 

  • Hazarika, P., Jickells, S. M., Wolff, K., & Russell, D. A. (2008). Imaging of latent fingerprints through the detection of drugs and metabolites. Angewandte Chemie International Edition, 47, 10167–10170.

    Article  Google Scholar 

  • Hazarika, P., Jickells, S. M., Wolff, K., & Russell, D. A. (2010). Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark. Analytical Chemistry, 82, 9150–9154.

    Article  Google Scholar 

  • Hofstetter, O., Hofstetter, H., Schurig, V., Wilchek, M., & Green, B. S. (1998). Antibodies can recognize the chiral center of free α-amino acids. Journal of the American Chemical Society, 120(13), 3251–3252.

    Article  Google Scholar 

  • Hoile, R., Banos, C., Colella, M., Walsh, S. J., & Roux, C. (2010). Gamma irradiation as a biological decontaminant and its effect on common fingermark detection techniques and DNA profiling. Journal of Forensic Sciences, 55(1), 171–177.

    Article  Google Scholar 

  • Jaber, N., Lesniewski, A., Gabizon, H., Shenawi, S., Mandler, D., & Almog, J. (2012). Visualization of latent fingermarks by nanotechnology: Reversed development on paper—A remedy to the variation in sweat composition. Angewandte Chemie International Edition, 51(49), 12224–12227.

    Article  Google Scholar 

  • Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83, 93–122.

    Article  Google Scholar 

  • Kayser, M. (2015). Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes. Forensic Science International: Genetics Supplement Series, 18, 33–48.

    Article  Google Scholar 

  • Kayser, M., & Schneider, P. M. (2009). DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations. Forensic Science International: Genetics Supplement Series, 3, 154–161.

    Article  Google Scholar 

  • Kirk, P. L. (1963). The ontogeny of criminalistics. The Journal of Criminal Law, Criminology and Police Science, 54, 235–238.

    Article  Google Scholar 

  • Kirkbride, K. P., Yap, S. M., Andrews, S., Pigou, P. E., Dinan, A. C., Peddie, F. L., et al. (1992). Microbial degradation of petroleum hydrocarbons: Implications for arson residue analysis. Journal of Forensic Sciences, 37, 1585–1599.

    Article  Google Scholar 

  • Korytár, P., Leonards, P. E. G., de Boer, J., & Brinkman, U. A. T. (2002). High-resolution separation of polychlorinated biphenyls by comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 958(1–2), 203–218.

    Article  Google Scholar 

  • Kuzhiumparambil, U., & Fu, S. (2013a). Effect of hydrogen peroxide oxidizing systems on human urinary steroid profiles. Analytical Methods, 5, 4402–4408.

    Article  Google Scholar 

  • Kuzhiumparambil, U., & Fu, S. (2013b). Effect of oxidising adulterants on human urinary steroid profiles. Steroids, 78(2), 288–296.

    Article  Google Scholar 

  • Kuzhiumparambil, U., Watanabe, S., & Fu, S. (2014). Oxidation of testosterone by permanganate and its implication in sports drug testing. New Journal of Chemistry, 39, 1597–1602.

    Article  Google Scholar 

  • Laurin, N., Célestin, F., Clark, M., Wilkinson, D., Yamashita, B., & Frégeau, C. (2015). New incompatibilities uncovered using the Promega DNA IQ™ chemistry. Forensic Science International, 257, 134–141.

    Article  Google Scholar 

  • Lax, S., Hampton-Marcell, J. T., Gibbons, S. M., Colares, G. B., Smith, D., Eisen, J. A., et al. (2015). Forensic analysis of the microbiome of phones and shoes. Microbiome, 3, 21.

    Article  Google Scholar 

  • Leggett, R., Lee-Smith, E. E., Jickells, S. M., & Russell, D. A. (2007). “Intelligent” fingerprinting: Simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles. Angewandte Chemie International Edition, 46, 4100–4103.

    Article  Google Scholar 

  • Lloyd, A. E., Blanes, L., Beavis, A., Roux, C., & Doble, P. (2011). A rapid method for the in-field analysis of amphetamines employing the Agilent Bioanalyzer. Analytical Methods, 3, 1535–1539.

    Article  Google Scholar 

  • Lloyd, A. E., Russell, M., Blanes, L., Doble, P., & Roux, C. (2013). Lab-on-a-chip screening of methamphetamine and pseudoephedrine in samples from clandestine laboratories. Forensic Science International, 228(1–3), 8–14.

    Article  Google Scholar 

  • Lloyd, A. E., Russell, M., Blanes, L., Somerville, R., Doble, P., & Roux, C. (2014). The application of portable microchip electrophoresis for the screening and comparative analysis of synthetic cathinone seizures. Forensic Science International, 242, 16–23.

    Article  Google Scholar 

  • Ludwig, A., & Fraser, J. (2013). Effective use of forensic science in volume crime investigations: Identifying recurring themes in the literature. Science & Justice, 54(1), 81–88.

    Article  Google Scholar 

  • Luong, S., & Fu, S. (2014). Detection and identification of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide in nitrite adulterated urine specimens containing morphine and its glucuronides. Drug Testing and Analysis, 6, 277–287.

    Article  Google Scholar 

  • Luong, S., Kuzhiumparambil, U., & Fu, S. (2015). Elucidation of markers for monitoring morphine and its analogs in urine adulterated with pyridinium chlorochromate. Bioanalysis, 7, 2283–2295.

    Article  Google Scholar 

  • Luong, S., Shimmon, R., Hook, J., & Fu, S. (2012). 2-Nitro-6-monoacetylmorphine: potential marker for monitoring the presence of 6-monoacetylmorphine in urine adulterated with potassium nitrite. Analytical and Bioanalytical Chemistry, 403, 2057–2063.

    Article  Google Scholar 

  • Luong, S., Ung, A. T., Kalman, J., & Fu, S. (2014). Transformation of codeine and codeine-6-glucuronide to opioid analogues by urine adulteration with pyridinium chlorochromate: Potential issue for urine drug testing. Rapid Communications in Mass Spectrometry, 28(14), 1609–1620.

    Article  Google Scholar 

  • Mai, T. D., Pham, T. T., Pham, H. V., Saiz, J., Ruiz, C. G., & Hauser, P. C. (2013). Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection. Analytical Chemistry, 85(4), 2333–2339.

    Article  Google Scholar 

  • Mangle, M. F., Xu, X., & de Puit, M. (2015). Performance of 1,2-indanedione and the need for sequential treatment of fingerprints. Science & Justice, 55(5), 343–346.

    Article  Google Scholar 

  • Mareck, U., Geyer, H., Opfermann, G., Thevis, M., & Schanzer, W. (2008). Factors influencing the steroid profile in doping control analysis. Journal of Mass Spectrometry, 43(7), 877–891.

    Article  Google Scholar 

  • Margot, P. (2011a). Commentary on the need for a research culture in the forensic sciences. UCLA Law Review, 58(3), 795–801.

    Google Scholar 

  • Margot, P. (2011b). Forensic science on trial—What is the law of the land? Australian Journal of Forensic Sciences, 43(2–3), 89–103.

    Article  Google Scholar 

  • Margot, P. (2014). Traçologie: La trace, vecteur fondamental de la police scientifique. Revue Internationale de Criminologie et de Police Technique et Scientifique, LXVI(1), 72–97.

    Google Scholar 

  • MarketsandMarkets (2014). Marketsandmarkets. Human Identification Market by Technology (Next Generation Sequencing, Rapid DNA Analysis, Capillary Electrophoresis, PCR), Application (Forensics, Paternity Testing), DNA Amplification, Quantification, Extraction, Services, & Software - Forecast to 2018 May 2014. http://www.marketsandmarkets.com/Market-Reports/human-identification-market-100607777.html. Accessed 23 April 2015.

  • Marriott, C., Lee, R., Wilkes, Z., Comber, B., Spindler, X., Roux, C., et al. (2014). Evaluation of fingermark detection sequences on paper substrates. Forensic Science International, 236, 30–37.

    Article  Google Scholar 

  • Marriott, P. J., Massil, T., & Hügel, H. (2004). Molecular structure retention relationships in comprehensive two-dimensional gas chromatography. Journal of Separation Science, 27(15–16), 1273–1284.

    Article  Google Scholar 

  • McMahon, G. (2007). Analytical instrumentation a guide to laboratory: Portable and miniaturized instruments. Hoboken: Wiley.

    Book  Google Scholar 

  • Mendoza Cuevas, A., Bernardini, F., Gianoncelli, A., & Tuniza, C. (2015). Energy dispersive X-ray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrometry, 44, 105–115.

    Article  Google Scholar 

  • Menzel, R. E., Takatsu, M., Murdock, R. H., Bouldin, K., & Cheng, K. H. (2000). Photoluminescent CdS/Dendrimer nanocomposites for fingerprint detection. Journal of Forensic Sciences, 45(4), 770–773.

    Article  Google Scholar 

  • Mnookin, J. L., Cole, S. A., Dror, I. E., Fisher, B. A. J., Houck, M. M., Inman, K., et al. (2011). The need for a research culture in the forensic sciences. UCLA Law Review, 58(3), 725–780.

    Google Scholar 

  • Morelato, M. (2015). Forensic drug profiling: A tool for intelligence-led policing. University of Technology Sydney, PhD Thesis.

  • Morelato, M., Baechler, S., Ribaux, O., Beavis, A., Tahtouh, M., Kirkbride, P., et al. (2014a). Forensic intelligence framework—Part I: Induction of a transversal model by comparing illicit drugs and false identity documents monitoring. Forensic Science International, 236, 181–190.

    Article  Google Scholar 

  • Morelato, M., Beavis, A., Tahtouh, M., Ribaux, O., Kirkbride, P., & Roux, C. (2014b). The use of organic and inorganic impurities found in MDMA police seizures in a drug intelligence perspective. Science & Justice, 54(1), 32–41.

    Article  Google Scholar 

  • Moret, S., Bécue, A., & Champod, C. (2013). Cadmium-free quantum dots in aqueous solution: Potential for fingermark detection, synthesis and an application to the detection of fingermarks in blood on non-porous surfaces. Forensic Science International, 224(1–3), 101–110.

    Article  Google Scholar 

  • Moret, S., Spindler, X., Lennard, C., & Roux, C. (2015). Microscopic examination of fingermark residues: Opportunities for fundamental studies. Forensic Science International, 255, 28–37.

    Article  Google Scholar 

  • Mucchielli, L. (2006). L’élucidation des homicides: De l’enchantement technologique à l’analyse du travail des enquêteurs de police judiciaire. Déviance et Société, 30(1), 91–119.

    Article  Google Scholar 

  • Nelson, R. K., Kile, B. M., Plata, D. L., Sylva, S. P., Xu, L., Reddy, C. M., et al. (2006). Tracking the weathering of an oil spill with comprehensive two-dimensional gas chromatography. Environmental Forensics, 7(1), 33–44.

    Article  Google Scholar 

  • Nizio, K. D., McGinitie, T. M., & Harynuk, J. J. (2012). Comprehensive multidimensional separations for the analysis of petroleum. Journal of Chromatography A, 1255, 12–23.

    Article  Google Scholar 

  • Overton, E. B., Dharmasena, H. P., Ehrmann, U., & Carney, K. R. (1996). Trends and advances in portable analytical instrumentation. Field Analytical Chemistry and Technology, 1(2), 87–92.

    Article  Google Scholar 

  • Park, J. L., Kwon, O. H., Kim, J. H., Yoo, H. S., Lee, H. C., Woo, K. M., et al. (2014). Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Science International: Genetics Supplement Series, 13, 147–153.

    Article  Google Scholar 

  • Parr, M. K., & Schanzer, W. (2010). Detection of the misuse of steroids in doping control. The Journal of Steroid Biochemistry and Molecular Biology, 121, 528–537.

    Article  Google Scholar 

  • Paul, B. D. (2004). Six spectroscopic methods for detection of oxidants in urine: Implication in differentiation of normal and adulterated urine. Journal of Analytical Toxicology, 28, 599–608.

    Article  Google Scholar 

  • Perrault, K. A., Nizio, K. D., & Forbes, S. L. (2015a). A Comparison of one-dimensional and comprehensive two-dimensional gas chromatography for decomposition odour profiling using inter-year replicate field trials. Chromatographia, 78(15–16), 1057–1070.

    Article  Google Scholar 

  • Perrault, K. A., Rai, T., Stuart, B. H., & Forbes, S. L. (2015b). Seasonal comparison of carrion volatiles in decomposition soil using comprehensive two-dimensional gas chromatography—Time of flight mass spectrometry. Analytical Methods, 7(2), 690–698.

    Article  Google Scholar 

  • Perrault, K. A., Stefanuto, P. H., Stuart, B. H., Rai, T., Focant, J. F., & Forbes, S. L. (2015c). Reducing variation in decomposition odour profiling using comprehensive two-dimensional gas chromatography. Journal of Separation Science, 38(1), 73–80.

    Article  Google Scholar 

  • Pesenti, A., Taudte, R., McCord, B., Doble, P., Roux, C., & Blanes, L. (2014). Coupling µPAD’s and lab on a chip technologies for confirmatory analysis of trinitro aromatic explosives. Analytical Chemistry, 86(10), 4707–4714.

    Article  Google Scholar 

  • Phillips, C., Gelabert-Besada, M., Fernandez-Formoso, L., Garcia-Magarinos, M., Santos, C., Fondevila, M., et al. (2014). “New turns from old STaRs”: Enhancing the capabilities of forensic short tandem repeat analysis. Electrophoresis, 35(21–22), 3173–3187.

    Article  Google Scholar 

  • Prete, C., Galmiche, L., Quenum-Possy-Berry, F.-G., Allain, C., Thiburce, N., & Colard, T. (2013). Lumicyano™: A new fluorescent cyanoacrylate for a one-step luminescent latent fingermark development. Forensic Science International, 233, 104–112.

    Article  Google Scholar 

  • Ramotowski, R. S. (2001). Composition of a latent print residue. In H. C. Lee & R. E. Gaensslen (Eds.), Advances in fingerprint technology (2nd ed., pp. 63–104). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Raymond, J. J., Roux, C., Du Pasquier, E., Sutton, J., & Lennard, C. (2004). The effect of common fingerprint detection techniques on the DNA typing of fingerprints deposited on different surfaces. Journal of Forensic Identification, 54(1), 22–44.

    Google Scholar 

  • Ribaux, O. (2014). Police scientifique, le renseignement par la trace. Lausanne: Presses polytechniques et universitaires romandes.

    Google Scholar 

  • Ribaux, O., Baylon, A., Lock, E., Delémont, O., Roux, C., Zingg, C., et al. (2010a). Intelligence-led crime scene processing. Part II: Intelligence and crime scene examination. Forensic Science International, 199(1–3), 63–71.

    Article  Google Scholar 

  • Ribaux, O., Baylon, A., Roux, C., Delémont, O., Lock, E., Zingg, C., et al. (2010b). Intelligence-led crime scene processing. Part I: Forensic intelligence. Forensic Science International, 195(1–3), 10–16.

    Article  Google Scholar 

  • Ribaux, O., Crispino, F., Delémont, O., & Roux, C. (2015). The progressive opening of forensic science toward criminological concerns. Security Journal. doi:10.1057/sj.2015.29.

  • Robertson, J. (2012). Forensic science, an enabler or dis-enabler for criminal investigation? Australian Journal of Forensic Sciences, 44(1), 83–91.

    Article  Google Scholar 

  • Roux, C., Crispino, F., & Ribaux, O. (2012). From forensics to forensic science. Current Issues in Criminal Justice, 24(1), 7–24.

    Google Scholar 

  • Roux, C., Julian, R., Kelty, S. F., & Ribaux, O. (2014). Forensic science effectiveness. In G. B. Field & D. W. Goldsmith (Eds.), Encyclopedia of criminology and criminal justice (pp. 1795–1804). Berlin: Springer.

    Chapter  Google Scholar 

  • Roux, C., Talbot-Wright, B., Robertson, J., Crispino, F., & Ribaux, O. (2015). The end of the (forensic science) world as we know it? The example of trace evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1674), 20140260.

    Article  Google Scholar 

  • Ruffella, A., & Wiltshire, P. (2004). Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Science International, 145, 13–23.

    Article  Google Scholar 

  • Sametband, M., Shweky, I., Banin, U., Mandler, D., & Almog, J. (2007). Application of nanoparticles for the enhancement of latent fingerprints. Chemical Communications, 11, 1142–1144.

    Article  Google Scholar 

  • Sandercock, P. M., & Du Pasquier, E. (2004). Chemical fingerprinting of gasoline. 2. Comparison of unevaporated and evaporated automotive gasoline samples. Forensic Science International, 140(1), 43–59.

    Article  Google Scholar 

  • Schoenly, K. G., Haskell, N. H., Mills, D. K., Bieme-ndi, C., Larsen, K., & Lee, Y. (2006). Recreating death’s acre in the school yard: Using pig carcasses as model corpses. The American Biology Teacher, 68, 402–410.

    Article  Google Scholar 

  • Scruton, B., Robins, B. W., & Blott, B. H. (1975). The deposition of fingerprint films. Journal of Physics D Applied Physics, 8, 714–723.

    Article  Google Scholar 

  • Sharma, S., Plistil, A., Barnett, H. E., Tolley, H. D., Farnsworth, P. B., Stearns, S. D., et al. (2015). Hand-portable gradient capillary liquid chromatography pumping system. Analytical Chemistry, 87(20), 10457–10461.

    Article  Google Scholar 

  • Sijen, T. (2014). Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. Forensic Science International: Genetics Supplement Series, 18, 21–32.

    Article  Google Scholar 

  • Sinkov, N. A., Johnston, B. M., Sandercock, P. M., & Harynuk, J. J. (2011). Automated optimization and construction of chemometric models based on highly variable raw chromatographic data. Analytica Chimica Acta, 697(1–2), 8–15.

    Article  Google Scholar 

  • Sinkov, N. A., Sandercock, P. M., & Harynuk, J. J. (2014). Chemometric classification of casework arson samples based on gasoline content. Forensic Science International, 235, 24–31.

    Article  Google Scholar 

  • Spindler, X., Hofstetter, O., McDonagh, A. M., Roux, C., & Lennard, C. (2011). Enhancement of latent fingermarks on non-porous surfaces using anti-l-amino acid antibodies conjugated to gold nanoparticles. Chemical Communications, 47, 5602–5604.

    Article  Google Scholar 

  • Stadler, S., Stefanuto, P. H., Brokl, M., Forbes, S. L., & Focant, J. F. (2013). Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Analytical Chemistry, 85(2), 998–1005.

    Article  Google Scholar 

  • Stadler, S., Stefanuto, P. H., Byer, J. D., Brokl, M., Forbes, S., & Focant, J. F. (2012). Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. Journal of Chromatography A, 1255, 202–206.

    Article  Google Scholar 

  • Stefanuto, P. H., Perrault, K. A., Lloyd, R. M., Stuart, B., Rai, T., Forbes, S. L., et al. (2015a). Exploring new dimensions in cadaveric decomposition odour analysis. Analytical Methods, 7(6), 2287–2294.

    Article  Google Scholar 

  • Stefanuto, P. H., Perrault, K., Stadler, S., Pesesse, R., Brokl, M., Forbes, S., et al. (2014). Reading cadaveric decomposition chemistry with a new pair of glasses. Chempluschem, 79(6), 786–789.

    Article  Google Scholar 

  • Stefanuto, P. H., Perrault, K. A., Stadler, S., Pesesse, R., LeBlanc, H. N., Forbes, S. L., et al. (2015b). GC×GC–TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures. Analytical and Bioanalytical Chemistry, 407(16), 4767–4778.

    Article  Google Scholar 

  • Stoilovic, M., & Lennard, C. (2012). Fingermark detection and enhancement (6th ed.). Canberra, Australia: National Centre for Forensic Studies.

    Google Scholar 

  • Taudte, R. V., Beavis, A. B., Wilson-Wilde, L., Roux, C. P., Doble, P. A., & Blanes, L. (2013). A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed uPAD’s. Lab on a Chip, 13(21), 4164–4172.

    Article  Google Scholar 

  • Thevis, M. (2010). Mass spectrometry and the list of prohibited substances and methods of doping. In M. D. Desiderio & M. M. N. Nibbering (Eds.), Mass spectrometry in sports drug testing (pp. 44–69). New Jersey: Wiley.

    Chapter  Google Scholar 

  • Thevis, M., Geyer, H., Mareck, U., Sigmund, G., Henke, J., Henke, L., et al. (2007). Detection of manipulation in doping control urine sample collection: a multidisciplinary approach to determine identical urine samples. Analytical and Bioanalytical Chemistry, 388(7), 1539–1543.

    Article  Google Scholar 

  • Thevis, M., Geyer, H., Sigmund, G., & Schanzer, W. (2012). Sports drug testing: Analytical aspects of selected cases of suspected, purported, and proven urine manipulation. Journal of Pharmaceutical and Biomedical Analysis, 57, 26–32.

    Article  Google Scholar 

  • Thevis, M., Kohler, M., & Schanzer, W. (2008). New drugs and methods of doping and manipulation. Drug Discovery Today, 13, 59–66.

    Article  Google Scholar 

  • Thomas, G. L. (1978). The physics of fingerprints and their detection. Journal of Physics E: Scientific Instruments, 11, 722–731.

    Article  Google Scholar 

  • Tipple, C. A., Caldwell, P. T., Kile, B. M., Beussman, D. J., Rushing, B., Mitchell, N. J., et al. (2014). Comprehensive characterization of commercially available canine training aids. Forensic Science International, 242, 242–254.

    Article  Google Scholar 

  • Turner, D. A., & Goodpaster, J. V. (2009). The effects of microbial degradation on ignitable liquids. Analytical and Bioanalytical Chemistry, 394(1), 363–371.

    Article  Google Scholar 

  • Turner, D. A., Pichtel, J., Rodenas, Y., McKillip, J., & Goodpaster, J. V. (2015). Microbial degradation of gasoline in soil: Effect of season of sampling. Forensic Science International, 251, 69–76.

    Article  Google Scholar 

  • van Dam, A., Aalders, M. C. G., de Puit, M., Gorré, S. M., Irmak, D., van Leeuwen, T. G., et al. (2014a). Immunolabeling and the compatibility with a variety of fingermark development techniques. Science & Justice, 54(5), 356–362.

    Article  Google Scholar 

  • van Dam, A., Aalders, M. C. G., van de Braak, K., Hardy, H. J., van Leeuwen, T. G., & Lambrechts, S. A. G. (2013). Simultaneous labeling of multiple components in a single fingermark. Forensic Science International, 232, 173–179.

    Article  Google Scholar 

  • van Dam, A., Schwarz, J. C. V., de Vos, J., Siebes, M., Sijen, T., van Leeuwen, T. G., et al. (2014b). Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks. Angewandte Chemie International Edition, 53(24), 6272–6275.

    Article  Google Scholar 

  • Vandenabeele, P., Edwards, H. G. M., & Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: Archaeometry, geosciences, and forensics. Chemical Society Reviews, 43, 2628–2649.

    Article  Google Scholar 

  • von Mühlen, C., Zini, C. A., Caramao, E. B., & Marriott, P. J. (2006). Applications of comprehensive two-dimensional gas chromatography to the characterization of petrochemical and related samples. Journal of Chromatography A, 1105(1–2), 39–50.

    Article  Google Scholar 

  • White, J. H., Lester, D., Gentile, M., & Rosenbleeth, J. (2011). The utilization of forensic science and criminal profiling for capturing serial killers. Forensic Science International: Genetics Supplement Series, 209(1–3), 160–165.

    Article  Google Scholar 

  • Wood, M., Maynard, P., Spindler, X., Lennard, C., & Roux, C. (2012). Visualization of latent fingermarks using an aptamer-based reagent. Angewandte Chemie International Edition, 51, 12272–12274.

    Article  Google Scholar 

  • Woods, B., Lennard, C., Kirkbride, K. P., & Robertson, J. (2014). Soil examination for a forensic trace evidence laboratory—Part 1: Spectroscopic techniques. Forensic Science International, 245, 187–194.

    Article  Google Scholar 

  • Yang, Y., Xie, B., & Yan, J. (2014). Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics, 12(5), 190–197.

    Article  Google Scholar 

  • Yi, S. H., Jia, Y. S., Mei, K., Yang, R. Z., & Huang, D. X. (2015). Age-related DNA methylation changes for forensic age-prediction. International Journal of Legal Medicine, 129(2), 237–244.

    Article  Google Scholar 

  • Zorzetti, B. M., Shaver, J. M., & Harynuk, J. J. (2011). Estimation of the age of a weathered mixture of volatile organic compounds. Analytica Chimica Acta, 694(1–2), 31–37.

    Article  Google Scholar 

  • Zubakov, D., Boersma, A. W., Choi, Y., van Kuijk, P. F., Wiemer, E. A., & Kayser, M. (2010a). MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. International Journal of Legal Medicine, 124(3), 217–226.

    Article  Google Scholar 

  • Zubakov, D., Liu, F., van Zelm, M. C., Vermeulen, J., Oostra, B. A., van Duijn, C. M., et al. (2010b). Estimating human age from T-cell DNA rearrangements. Current Biology, 20(22), R970–R971.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Technology Sydney (UTS) for the Centre for Forensic Science Research Strength block funding, the Australian Federal Police (AFP) for Forensic Science Sponsorship, the Bulgin Fund for Forensic Science research, RSC Publication for the use of Fig. 1 and Professors Claude Roux, Shari Forbes, Peter Gunn and Shanlin Fu for their constructive feedback on the manuscript. We also would like to thank the two anonymous reviewers for their insightful comments that allowed us to improve the quality of the manuscript. Drs. Jessirie Dilag and Xanthe Spindler thank the Australian Research Council (ARC), the UTS Chancellor’s postdoctoral fellowship, the AFP, Victoria Police, partner and chief investigators for their ongoing support of ARC Linkage Project LP130101019. Dr. Marie Morelato would like to gratefully thank the AFP and UTS Chancellor’s postdoctoral fellowship. Dr. Lucas Blanes would like to thank the Defence Science and Technology Group (DSTG) of the Department of Defence of Australia (Project MylP#6077). Dr. Sébastien Moret would like to thank the Swiss National Science Foundation (SNSF) for the grant provided to support his research (Early Postdoc.Mobility grant no. P2LAP1_151777). Dr. Katie Nizio wishes to acknowledge the financial support of Prof Shari Forbes’ ARC Future Fellowship (FT110100753) and ARC Linkage Infrastructure, Equipment and Facilities Grant (LE150100015) including partner and chief investigators. Dr. Unnikrishnan Kuzhiumparambil would like to thank Anti-Doping Research Program (ADRP) of the Australian Government, Department of Regional Australia, Local Government, Arts and Sport for the grant provided to support this research (20-UTS-2011-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Moret.

Additional information

Marie Morelato, Mark Barash, Lucas Blanes, Scott Chadwick, Jessirie Dilag, Unnikrishnan Kuzhiumparambil, Katie D. Nizio, Xanthe Spindler and Sebastien Moret have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelato, M., Barash, M., Blanes, L. et al. Forensic Science: Current State and Perspective by a Group of Early Career Researchers. Found Sci 22, 799–825 (2017). https://doi.org/10.1007/s10699-016-9500-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-016-9500-0

Keywords

Navigation