Skip to main content
Log in

Toward a History of Mathematics Focused on Procedures

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Some historians are fond of recycling the claim that Robinson used model theory to develop his system with infinitesimals. What they tend to overlook is not merely the fact that an alternative construction of the hyperreals via an ultrapower requires nothing more than a serious undergraduate course in algebra (covering the existence of a maximal ideal), but more significantly the distinction between procedures and foundations, as discussed in this Sect. 2.1, which highlights the point that whether one uses Weierstrass’s foundations or Robinson’s is of little import, procedurally speaking.

  2. Sherry (1987) argued that Berkeley’s criticism of the calculus actually consisted of two separate components that should not be conflated, namely a logical and a metaphysical one:

    1. (a)

      logical criticism: how can dx be simultaneously zero and nonzero?

    2. (b)

      metaphysical criticism: what are these infinitesimal things anyway that we can’t possibly have any perceptual access to or empirical verification of?

  3. Note that the modern Zermelo–Fraenkel (ZFC) framework definitely works as a foundational system, but no-one can adequately say why, for instance, ZFC is consistent to begin with (moreover, in a precise sense discovered by Goedel, this cannot even be answered in the positive).

  4. In point of fact, Euler is not seeking to ‘rigorise’ the calculus here, contrary to what Gray implies. Moreover, there is little indication that Euler found it problematic. He merely goes on to develop the calculus, e.g., by expanding trigonometric functions into series. It was the task of later generations to reshape his theses in a different setting.

  5. At http://mathoverflow.net/questions/242379 the reader will find many other examples.

  6. The proof exploits the assumption that there exists a set S of all things, and that a mathematical thing is an object of our thought. Then if s is such a thing, then the thought, denoted \(s'\), that “s can be an object of my thought” is a mathematical object is a thing distinct from s. Denoting the passage from s to \(s'\) by \(\phi \), Dedekind gets a self-map \(\phi \) of S which is some kind of blend of the successor function and the brace-forming operation. From this Dedekind derives that S is infinite, QED.

  7. In modern notation this can be expressed as \((\forall x,y>0)(\exists n\in {\mathbb N})[nx > y]\).

  8. In modern editions of The Elements this appears as Definition V.4.

  9. This can be translated as follows: “I use the term incomparable magnitudes to refer to [magnitudes] of which one multiplied by any finite number whatsoever, will be unable to exceed the other, in the same way [adopted by] Euclid in the fifth definition of the fifth book [of the Elements].”

References

  • Arthur, R. (2013). Leibniz’s syncategorematic infinitesimals. Archive for History of Exact Sciences, 67(5), 553–593.

    Article  Google Scholar 

  • Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Reeder, P., Schaps, D., Sherry, D., & Shnider, S. (2016). Interpreting the infinitesimal mathematics of Leibniz and Euler. Journal for General Philosophy of Science. doi:10.1007/s10838-016-9334-z and arxiv:1605.00455.

  • Bascelli, T. (2014a). Galileo’s quanti: Understanding infinitesimal magnitudes. Archive for History of Exact Sciences, 68(2), 121–136.

    Article  Google Scholar 

  • Bascelli, T. (2014b). Infinitesimal issues in Galileo’s theory of motion. Revue Roumaine de Philosophie, 58(1), 23–41.

    Google Scholar 

  • Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., & Sherry, D. (2016) Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. HOPOS: Journal of the Internatonal Society for the History of Philosophy of Science 6(1), 117–147. doi:10.1086/685645 and arxiv:1603.07209.

  • Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., Nowik, T., Sherry, D., Shnider, S. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864.

    Article  Google Scholar 

  • Benacerraf, P. (1965). What numbers could not be. The Philosophical Review, 74, 47–73.

    Article  Google Scholar 

  • Błaszczyk, P., Borovik, A., Kanovei, V., Katz, K., Katz, M., Kudryk, T., Kutateladze, S., Sherry, D. (2016a). A non-standard analysis of a cultural icon: The case of Paul Halmos. Logica Universalis. doi:10.1007/s11787-016-0153-0 and arxiv:1607.00149.

    Google Scholar 

  • Błaszczyk, P., Kanovei, V., Katz, M., & Sherry, D. (2016b) Controversies in the foundations of analysis: Comments on Schubring’s Conflicts. Foundations of Science. doi:10.1007/s10699-015-9473-4 and arxiv:1601.00059.

  • Błaszczyk, P., Katz, M., & Sherry, D. (2013). Ten misconceptions from the history of analysis and their debunking. Foundations of Science, 18(1), 43–74. doi:10.1007/s10699-012-9285-8 and arxiv:1202.4153.

  • Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi:10.1007/s10699-011-9235-x.

    Article  Google Scholar 

  • Bos, H. (1974). Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences, 14, 1–90.

    Article  Google Scholar 

  • Bottazzini, U., & Gray, J. (2013). Hidden harmony–geometric fantasies. The rise of complex function theory., Sources and studies in the history of mathematics and physical sciences New York: Springer.

    Google Scholar 

  • Boyer, C. (1949). The concepts of the calculus. New York: Hafner Publishing Company.

    Google Scholar 

  • Cantor, G. (1872). Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Mathematische Annalen, 5, 123–132.

    Article  Google Scholar 

  • Capobianco, G., Enea, M., & Ferraro, G. (2016). Geometry and analysis in Euler’s integral calculus. Archive for History Exact Sciences,. doi:10.1007/s00407-016-0179-y.

    Google Scholar 

  • Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1, (Vol. 12, pp. 30–36). Paris: Gauthier-Villars, 1900.

  • Cutland, N., Kessler, C., Kopp, E., & Ross, D. (1988). On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science, 39(3), 375–378.

    Article  Google Scholar 

  • Dedekind, R. (1872). Stetigkeit und Irrationale Zahlen. Braunschweig: Friedrich Vieweg & Sohn.

    Google Scholar 

  • De Risi, V. (2016). Leibniz on the parallel postulate and the foundations of geometry. Berlin: Springer. (The Unpublished Manuscripts).

    Book  Google Scholar 

  • Dugac, P. (1970). Charles Méray (1935–1911) et la notion de limite. Revue d’Histoire des Sciences et de leurs Applications, 23(4), 333–350.

    Article  Google Scholar 

  • Euler, L. (1755). Institutiones Calculi Differentialis. Academic imperiale des sciences, St. Petersburg, 1755; also in Opera Omnia Ser. 1, vol. 10, Füssli, Zurich and Teubner, Leipzig and Berlin, 1913.

  • Euler, L. (2000). Foundations of differential calculus (J. Blanton, Trans.). English translation of Chapters 1–9 of [Euler 1755]. New York: Springer.

  • Fermat, P. (1643). Letter to Brûlart. 31 march 1643. Oeuvres, vol. 5, pp. 120–125.

  • Ferraro, G. (1998). Some aspects of Euler’s theory of series: Inexplicable functions and the Euler–Maclaurin summation formula. Historia Mathematica, 25(3), 290–317.

    Article  Google Scholar 

  • Ferraro, G. (2008). The rise and development of the theory of series up to the early 1820s., Sources and Studies in the history of mathematics and physical sciences New York: Springer.

    Google Scholar 

  • Ferraro, G. (2014). Filosofia e pratica della matematica nell’età dei Lumi. Rome: Aracne Editrice.

    Google Scholar 

  • Ferreirós, J. (2007). Labyrinth of thought. A history of set theory and its role in modern mathematics (2nd ed.). Basel: Birkhäuser.

    Google Scholar 

  • Fraser, C. (1989). The calculus as algebraic analysis: Some observations on mathematical analysis in the 18th century. Archive for History of Exact Sciences, 39(4), 317–335.

    Google Scholar 

  • Gandz, S. (1936). The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon (c. 1350). Isis, 25, 16–45.

    Article  Google Scholar 

  • Gerhardt, C. I. (ed.) (1850–1863) Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.

  • Giusti, E. (2009) Les méthodes des maxima et minima de Fermat. Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6, 18, Fascicule Special, 59–85.

  • Gray, J. (2008). A short life of Euler. BSHM Bulletin. Journal of the British Society for the History of Mathematics, 23(1), 1–12.

  • Gray, J. (2015). The real and the complex: A history of analysis in the 19th century., Springer Undergraduate Mathematics Series New York: Springer.

    Google Scholar 

  • Gregory, J. (1667) Vera Circuli et Hyperbolae Quadratura. Padua edition, 1667. Patavia edition, 1668.

  • Hacking, I. (2014). Why is there philosophy of mathematics at all?. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Heine, E. (1872). Elemente der Functionenlehre. Journal fur die reine und angewandte Mathematik, 74, 172–188.

    Article  Google Scholar 

  • Hoborski, A. (1923). Nowa teoria liczb niewymiernych. [New theory of irrational numbers] Kraków 1923. See also his “Aus der theoretischen Arithmetik.” Opuscucla Mathematica, 2, 11–12, Kraków, 1938. https://zbmath.org/?q=an:64.1000.03.

  • Ishiguro, H. (1990). Leibniz’s philosophy of logic and language (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jesseph, D. (2015). Leibniz on the elimination of infinitesimals. In N. B. Goethe, P. Beeley, & D. Rabouin (Eds.), G.W. Leibniz, interrelations between mathematics and philosophy (pp. 189–205)., Archimedes Series 41 New York: Springer.

    Google Scholar 

  • Joyce, D. (2005). Notes on Richard Dedekind’s Was sind und was sollen die Zahlen? Preprint. http://aleph0.clarku.edu/~djoyce/numbers/dedekind.

  • Katz, K., & Katz, M. (2011). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. doi:10.1162/POSC_a_00047 and arxiv:1108.4201.

  • Katz, K., & Katz, M. (2012a). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi:10.1007/s10699-011-9223-1 and arxiv:1104.0375.

  • Katz, K., & Katz, M. (2012b). Stevin numbers and reality. Foundations of Science, 17(2), 109–123. doi:10.1007/s10699-011-9228-9 and arxiv:1107.3688.

  • Katz, M., Schaps, D., & Shnider, S. (2013). Almost equal: The method of adequality from diophantus to fermat and beyond. Perspectives on Science, 21(3), 283–324. http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00101.pdf and arxiv:1210.7750.

  • Katz, M., & Sherry, D. (2012). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), 1550–1558. http://www.ams.org/notices/201211/rtx121101550p.pdf and arxiv:1211.7188.

  • Katz, M., Sherry, D. (2013) Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625. doi:10.1007/s10670-012-9370-y and arxiv:1205.0174.

  • Katz, M., & Tall, D. (2013). A Cauchy–Dirac delta function. Foundations of Science, 18(1), 107–123. doi:10.1007/s10699-012-9289-4 and arxiv:1206.0119.

  • Laugwitz, D. (1987). Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica, 14, 258–274.

    Article  Google Scholar 

  • Laugwitz, D. (1989). Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences, 39, 195–245.

    Article  Google Scholar 

  • Leibniz, G. (1695a). To l’Hospital, 14/24 june 1695, in (Gerhardt 1850–1863), vol. I, pp. 287–289.

  • Leibniz, G. (1702). To Varignon, 2 febr., 1702, in (Gerhardt 1850-1863) IV, pp. 91–95.

  • Malet, A. (2006). Renaissance notions of number and magnitude. Historia Mathematica, 33(1), 63–81.

    Article  Google Scholar 

  • Méray, C. (1869). Remarques sur la nature des quantités définies par la condition de servir de limites à des variables données. Revue des Sociétés savantes, Sciences mathém. phys. et naturelles, 2(IV), 281–289.

  • Nowik, T., & Katz, M. (2015) Differential geometry via infinitesimal displacements. Journal of Logic and Analysis, 7(5), 1–44. http://www.logicandanalysis.org/index.php/jla/article/view/237/106.

  • Pólya, G. (1941). Heuristic reasoning and the theory of probability. American Mathematical Monthly, 48, 450–465.

    Article  Google Scholar 

  • Quine, W. (1968). Ontological relativity. The Journal of Philosophy, 65(7), 185–212.

    Article  Google Scholar 

  • Robinson, A. (1966). Non-standard analysis. Amsterdam: North-Holland Publishing.

    Google Scholar 

  • Settle, T. (1966). Galilean science: Essays in the mechanics and dynamics of the Discorsi.  Ph.D. dissertation, Cornell University, p. 288.

  • Sherry, D. (1987). The wake of Berkeley’s Analyst: Rigor mathematicae? Studies in History and Philosophy of Science, 18(4), 455–480.

    Article  Google Scholar 

  • Sherry, D., & Katz, M. (2014). Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana, 44(2), 166–192 (the article appeared in 2014 even though the year given in the journal issue is 2012). arxiv:1304.2137.

  • Stolz, O. (1883). Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes. Mathematische Annalen, 22(4), 504–519.

    Article  Google Scholar 

  • Strømholm, P. (1968). Fermat’s methods of maxima and minima and of tangents. A reconstruction. Archive for History of Exact Sciences, 5(1), 47–69.

    Article  Google Scholar 

  • Wartofsky, M. (1976). The Relation between philosophy of science and history of science. In R. S. Cohen, P. K. Feyerabend, & M. W. Wartofsky (Eds.), Essays in memory of Imre Lakatos, 717–737, Boston studies in the philosophy of science XXXIX, D. Dordrecht, Holland: Reidel Publishing.

    Google Scholar 

  • Wisan, W. (1974). The new science of motion: A study of Galileo’s De motu locali. Archive for History of Exact Sciences, 13, 103–306.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Paul Garrett for subtle remarks that helped improve an earlier version of the text. M. Katz was partially funded by the Israel Science Foundation grant number 1517/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Błaszczyk, P., Kanovei, V., Katz, K.U. et al. Toward a History of Mathematics Focused on Procedures. Found Sci 22, 763–783 (2017). https://doi.org/10.1007/s10699-016-9498-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-016-9498-3

Keywords

Navigation