Skip to main content
Log in

On the Import of Constraints in Complex Dynamical Systems

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Complexity arises from interaction dynamics, but its forms are co-determined by the operative constraints within which the dynamics are expressed. The basic interaction dynamics underlying complex systems is mostly well understood. The formation and operation of constraints is often not, and oftener under appreciated. The attempt to reduce constraints to basic interaction fails in key cases. The overall aim of this paper is to highlight the key role played by constraints in shaping the field of complex systems. Following an introduction to constraints (Sect. 1), the paper develops the roles of constraints in specifying forms of complexity (Sect. 2) and illustrates the roles of constraints in formulating the fundamental challenges to understanding posed by complex systems (Sect. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold V. I. (1978) Mathematical methods of classical mechanics. Springer, Berlin

    Book  Google Scholar 

  • Barandiaran, X., & Ruiz-mirazo, K. (Eds.) (2008). Modelling autonomy: Simulating the essence of life and cognition. BioSystems, 91(2).

  • Bechtel W. (2007) Biological mechanisms: Organised to maintain autonomy. In: Boogerd F., Bruggeman F., Hofmeyr J.-H., Westerhoff H. V. (Eds.), Systems biology: Philosophical foundations. Elsevier, Amsterdam, pp 269–302

    Chapter  Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2011). Complex biological mechanisms: Cyclic, oscillatory and autonomous. In C. A. Hooker (Ed.) Philosophy of complex systems. Handbook of the Philosophy of Science (Vol. 10, pp. 259–288). Amsterdam: North Holland/Elsevier.

  • Bennett C. (1985) Dissipation, information, computational complexity and the definition of organization. In: Pines D. Emerging syntheses in science, proceedings of the founding workshops of the santa fe institute. Addison Wesley, Redwood California

    Google Scholar 

  • Bennett, C. (1992). Logical depth and other algorithmically defined properties of finite objects. In Proceedings, workshop on physics and computation, IEEE, pp. 75–77.

  • Bickhard M. H. (1993) Representational content in humans and machines. Experimental and Theoretical Artificial Intelligence 5: 285–333

    Article  Google Scholar 

  • Bishop R. C. (2005) Patching physics and chemistry together. Philosophy of Science 72: 710–722

    Article  Google Scholar 

  • Bishop R. C. (2008) Downward causation in fluid convection. Synthese 160: 229–248

    Article  Google Scholar 

  • Bishop R. C. (2011) Metaphysical and epistemological issues in complex systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 107–138

    Google Scholar 

  • Bloch, A. M. (2003). Nonholonomic mechanics and control. Springer, New York, See http://www.cds.caltech.edu/mechanics_and_control/about_this_book/ for corrections and additions, incl. internet supplement.

  • Bongard J., Lipson H. (2007) Automated reverse engineering of non-linear dynamical systems. Proceedings of the National Academy of Science 104(24): 9943–9948

    Article  Google Scholar 

  • Butterfield, J. (2004a) Between laws and models: Some philosophical morals of Lagrangian mechanics. Available at http://philsci-archive.pitt.edu/archive/00001937/. Accessed Apr 2009.

  • Butterfield, J. (2004b). On Hamilton-Jacobi theory as a classical root of quantum theory. In A. C. Elitzur, S. Dolev, & N. Kolenda (Eds.), Quo Vadis quantum mechanics? Possible developments in quantum theory in the 21st century. New York, Springer. Available at http://philsci-archive.pitt.edu/archive/00001193/. Accessed Apr 2009.

  • Christensen, W. D., & Hooker, C. A. (2000a). Organised interactive construction: The nature of autonomy and the emergence of intelligence. In: A. Etxebberia, A. Moreno, & J. Umerez (Eds.), The contribution of artificial life and the sciences of complexity to the understanding of autonomous systems. Communication and Cognition, Special Edn (Vol. 17, No. 3–4, pp. 133–158).

  • Christensen W., Hooker C. A. (2000b) An interactivist-constructivist approach to intelligence: Self-directed anticipative learning. Philosophical Psychology 13: 5–45

    Article  Google Scholar 

  • Christensen, W. D., & Hooker, C. A. (2002). Self-directed agents. In J. MacIntosh (Ed.), Naturalism, evolution and intentionality. Ottawa, Canadian Journal of Philosophy, Special Supplementary Vol. 27, pp. 19–52.

  • Christensen W. D., Hooker C. A. (2004) Representation and the meaning of life. In: Clapin H., Staines P., Slezak P. (Eds.), Representation in mind: New approaches to mental representation. Elsevier, Sydney, pp 41–69

    Chapter  Google Scholar 

  • Clarke, D., & Proença, J. (2009). Coordination via interaction constraints I: Local logic. In F. Bonchi, D. Grohmann, & P. Spoletini, E. Tuosto (Eds.), ICE’09 structured interactions, EPTCS, 12, pp. 17–39. doi:10.4204/EPTCS.12.2.

  • Coleman R. A., Korté H. (1999) Geometry and forces in relativistic and pre-relativistic theories. Foundations of Physics Letters 12(2): 147–163. doi:10.1023/A:1021609022945

    Article  Google Scholar 

  • Collier J. D., Hooker C. A. (1999) Complex organised dynamical systems. Open Systems and Information Dynamics 6: 241–302

    Article  Google Scholar 

  • Dewar, R. L., Hudson, S. R., & Gibson, A. M. Action-gradient-minimizing pseudo-orbits and almost-invariant tori (preprint, submitted).

  • Emmeche C., Koppe S., Stjernfelt F. (2000) Levels, emergence, and three versions of downward causation. In: Anderson P., Emmeche C., Finnemann N., Christiansen P. (Eds.), Downward causation: Minds, bodies, and matter. Aarhus University Press, Aarhus, pp 13–34

    Google Scholar 

  • Farrell R., Hooker C. A. (2007a) Applying self-directed anticipative learning to science: agency and the interactive exploration of possibility space in ape language research. Perspectives on Science 15(1): 86–123

    Article  Google Scholar 

  • Farrell R., Hooker C. A. (2007b) Applying self-directed anticipative learning to science: Learning how to learn across revolutions. Perspectives on Science 15(2): 220–253

    Article  Google Scholar 

  • Farrell R, Hooker C. A. (2009) Applying self-directed anticipative learning to science: identifying error and severe testing through interactive exploration of possibility. Foundations of Science 14(4): 249–271

    Article  Google Scholar 

  • Flannery, M. R. (2005). The enigma of nonholonomic constraints. American Journal of Physics, 73(3), 265–272. Available at http://www.physics.gatech.edu/people/faculty/flannery/publications/AJP73_March2005_265-272.pdf

    Google Scholar 

  • Flannery M. R. (2011a) D’Alembert–Lagrange analytical dynamics for nonholonomic systems. Journal of Mathematical Physics 52(3): 032705. doi:10.1063/1.3559128

    Article  Google Scholar 

  • Flannery M. R. (2011b) The elusive d’Alembert-Lagrange dynamics of nonholonomic systems. American Journal of Physics 79(9): 932–944

    Article  Google Scholar 

  • Gánti T. (2003) The principles of life. Oxford University Press, New York

    Book  Google Scholar 

  • Gell-Mann M. (1994) The Quark and the Jaguar: Adventures in the simple and the complex. Henry Holt, New York

    Google Scholar 

  • Goldstein H. (1950) Classical mechanics. Addison-Wesley, Reading, Mass

    Google Scholar 

  • Gray C. G., Taylor E. F. (2007) When action is not least. American Journal of Physics 75(5): 434–458

    Article  Google Scholar 

  • Groß R., Dorigo M. (2007) Fifty years of self-assembly experimentation. In: Shen W.-M., Lipson H., Stoy K., Yim M. Proceedings of the workshop on self-reconfigurable robots/systems and applications. USC Information Science Institute, USA

    Google Scholar 

  • Groß R., Dorigo M. (2008) Self-assembly at the macroscopic scale. Proceedings of IEEE 96(9): 1490–1508

    Article  Google Scholar 

  • Hooker C. A. (1994) Idealisation, naturalism, and rationality: Some lessons from minimal rationality. Synthese 99: 181–231

    Google Scholar 

  • Hooker C. A. (2004) Asymptotics, reduction and emergence. British Journal for the Philosophy of Science 55: 435–479

    Article  Google Scholar 

  • Hooker C. A. (2009) Interaction and bio-cognitive order. Synthese 166(3): 513–546

    Article  Google Scholar 

  • Hooker, C. A. (Ed.). (2011a) Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam

    Google Scholar 

  • Hooker C. A. (2011b) Introduction to philosophy of complex systems. Part A: Towards framing philosophy of complex systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 3–92

    Chapter  Google Scholar 

  • Hooker C. A. (2011c) Introduction to philosophy of complex systems. Part B: Aninitial scientific paradigm + philosophy of science for complex systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 843–912

    Google Scholar 

  • Hooker C. A. (2011d) Conceptualising reduction, emergence and self-organisation in complex dynamical systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 197–224

    Google Scholar 

  • Kaufman S. (2000) Investigations. Oxford University Press, New York

    Google Scholar 

  • Mackworth A. K. (2009) Agents bodies constraints dynamics evolution. AI Magazine, Spring, pp 7–28

    Google Scholar 

  • Marr D. (1982) Vision. MIT Press, Cambridge, Mass

    Google Scholar 

  • Maynard-Smith J., Szathmary E. (1995) The major transitions in evolution. Freeman, New York

    Google Scholar 

  • Moreno A. (2007) A systemic approach to the origin of biological organization. In: Boogerd F., Bruggeman F., Hofmeyr J.-H., Westerhoff H. V. (Eds.), Systems biology: Philosophical foundations. Elsevier, Amsterdam, pp 243–268

    Chapter  Google Scholar 

  • Moreno A., Ruiz-Mirazo K. (1999) Metabolism and the problem of its universalization. Biosystems 49: 45–61

    Article  Google Scholar 

  • Moreno A., Ruiz-Mirazo K., Barandiaran X. (2011) The impact of the paradigm of complexity on the foundational frameworks of biology and cognitive science. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 313–336

    Google Scholar 

  • Newman S. A. (1970) Note on complex systems. Journal of Theoretical Biology 28: 411–413

    Article  Google Scholar 

  • Newman S. A. (2011a) Complexity in organismal evolution. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 337–356

    Google Scholar 

  • Newman S. A. (2011b) The animal egg as evolutionary innovation: A solution to the ‘embryonic hourglass’ puzzle. Journal of Experimental Zoology, B: Molecular and Developmental Evolution 316(7): 467–483

    Article  Google Scholar 

  • Newman, S. A., & Bhat, R. (2008). Dynamical patterning modules: Physico-genetic determinants of morphological development and evolution. Physical Biology, 5, 015008. Available at http://stacks.iop.org/PhysBio/5/015008.

  • Nolfi S. (2011) Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 445–467

    Google Scholar 

  • O’Connor T., & Wong, H. Y. (2002) Emergence. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/properties-emergent/

  • Pattee, H. H. (1971). Physical theories of biological co-ordination. Quarterly Reviews of Biophysics, 4, 255–276. Reprinted in M. Grene, E. Mendelsohn (Eds.), Topics in the philosophy of biology, Reidel, Amsterdam, 1976. doi:10.1017/S0033583500000640 (published online) 2009.

  • Pattee H. H. (1973) The physical basis and origin of hierarchical control. In: Pattee H. H. (Ed.), Hierarchy theory: The challenge of complex systems. Geo. Braziller, New York, pp 71–108

    Google Scholar 

  • Pfeifer R., Bongard J. C. (2007) How the body shapes the way we think: A new view of intelligence. MIT Press, Cambridge, Mass

    Google Scholar 

  • Raynor A. (1977) Degrees of freedom: Living in dynamic boundaries. Imperial College Press, London

    Google Scholar 

  • Rueger A. (2005) Perspectival models and theory unification. British Journal for the Philosophy of Science 56(3): 579–594

    Article  Google Scholar 

  • Ruiz-mirazo K., Moreno A. (2004) Basic autonomy as a fundamental step in the synthesis of life. Artificial Life 10(3): 235–259

    Article  Google Scholar 

  • Shalizi, C. R. (2006). Methods and techniques of complex systems science: An overview. In T. Deisboeck, J. Kresh (Eds.), Complex systems science in bio-medicine. Springer, New York. Also available at http://arXiv.org/abs/nlin/0307015.

  • Schmidt M., Lipson H. (2009) Distilling free form natural laws from experimental data. Science 324(5923): 81–85

    Article  Google Scholar 

  • Skewes J., Hooker C. A. (2009) Bio-agency and the problem of action. Biology and Philosophy 24(3): 283–300

    Article  Google Scholar 

  • Subhankar R., & Shamanna, J. (2006) Understanding D’Alembert’s principle: System of pendulums. Available at http://arxiv.org/PS_cache/physics/pdf/0606/0606010v2.pdf.

  • Soltakhanov S. K., Yushkov M. P., Zegzhda S. A. (2009) Mechanics of non-holonomic systems. Springer, Heidelberg

    Book  Google Scholar 

  • Szathmáry, E (2005). Life: In search of the simplest cell. Nature, 433(3), 469–470.

    Google Scholar 

  • Tegnér J., Yeung M. K. S., Hasty J., Collins J. J. (2003) Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Science 100(10): 5944–5949

    Article  Google Scholar 

  • Turing A. (1952) The chemical basis for morphogenesis. Philosophical transactions of the Royal Society of London, B: Biological Sciences, 237(641), 37–72. Available at http://www.jstor.org/stable/92463.

  • Wackerbauer R., Witt A., Atmanspacher H., Kurths J., Scheingraber H. (1994) A comparative classification of complexity measures. Chaos, Solitons & Fractals 4(1): 133–173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliff Hooker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooker, C. On the Import of Constraints in Complex Dynamical Systems. Found Sci 18, 757–780 (2013). https://doi.org/10.1007/s10699-012-9304-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-012-9304-9

Keywords

Navigation