Skip to main content
Log in

Informational Branching Universe

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

This paper suggests an epistemic interpretation of Belnap’s branching space-times theory based on Everett’s relative state formulation of the measurement operation in quantum mechanics. The informational branching models of the universe are evolving structures defined from a partial ordering relation on the set of memory states of the impersonal observer. The totally ordered set of their information contents defines a linear “time” scale to which the decoherent alternative histories of the informational universe can be referred—which is quite necessary for assigning them a probability distribution. The “historical” state of a physical system is represented in an appropriate extended Hilbert space and an algebra of multi-branch operators is developed. An age operator computes the informational depth of historical states and its standard deviation can be used to provide a universal information/energy uncertainty relation. An information operator computes the encoding complexity of historical states, the rate of change of its average value accounting for the process of correlation destruction inherent to the branching dynamics. In the informational branching models of the universe, the asymmetry of phenomena in nature appears as a mere consequence of the subject’s activity of measuring, which defines the flow of time-information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balian, R. (1982). Du Microscopique au Macroscopique. Cours de Physique Statistique de l’Ecole Polytechnique. Tome 1. Ellipses.

  • Balian R. (2005) Information in statistical physics. Studies in Histories and Philosophy of Modern Physics 36: 323–353

    Article  Google Scholar 

  • Belnap, N. (2002). EPR-like “funny business” in the theory of branching space-times. http://philsci-archive.pitt.edu.

  • Belnap, N. (2003). Branching space-time. Post-print of Belnap 1992. http://philsci-archive.pitt.edu.

  • Belnap, N., & Szabó, L. E. (1996). Branching space-time analysis of the GHZ theorem. Foundations of Physics, arXiv:quant-ph/9510002v3 4 Jun 1996.

  • Bitbol M. (1988) The concept of measurement and time symmetry in quantum mechanics. Philosophy of Science 55: 349–375

    Article  Google Scholar 

  • Bitbol, M. (1996). Mécanique Quantique. Une introduction philosophique. Flammarion.

  • Boltzmann L. (1910) Vorlesungen über Gastheorie. Barth, Leipzig

    Google Scholar 

  • Bohm D., Hiley B.J. (1993) The undivided universe. Routledge, London

    Google Scholar 

  • Burgess J. P. (1978) The unreal future. Theoria 4: 157–179

    Google Scholar 

  • Brillouin L. (1956) Science and information theory. Academic Press, New York

    Google Scholar 

  • Carnap, R. (1966). Philosophical foundations of physics (Chap. 24). In M. Gardner (Ed.), French translation Armand Colin 1973, Paris.

  • Cassirer, E. (1972). La philosophie des formes symboliques. French translation. Collection “Le Sens Commun” Ed. de Minuit.

  • Caves C. M. (1990) Entropy and information: How much information is needed to assign a probability?. In: Zurek W. H. (eds) Complexity, entropy and the physics of information. Addisson Wesley Publishing Company, Reading, MA

    Google Scholar 

  • Chaitin G.J. (1977) Algorithmic information theory. IBM Journal of Research Development 21: 350–359

    Article  Google Scholar 

  • Clifton R., Bub J., Halvorson H. (2003) Characterizing quantum theory in terms of information theoretic constraints. Foundations of Physics 33(11): 1561

    Article  Google Scholar 

  • Costa de Beauregard, O. (1963). Le Second Principe de la Science du Temps. Edition Seuil.

  • Destouche-Février, P. (1945). Sur l’impossibilité d’un retour au déterminisme en microphysique. Compte rendu de l’Académie des Sciences. T. 220, p. 587.

  • De Witt B. (1970) Quantum mechanics and reality. Physics Today 23(9): 30–35

    Article  Google Scholar 

  • Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London, A455, 3129–3137. http://www.arXiv.org/abs/quant-ph/9906015.

  • Espagnat, B. (d’) (1994). Le Réel Voilé. Analyse des concepts quantiques. Edition Fayard.

  • Espagnat B. (d’) (1979) The quantum theory and reality. Scientific American 241(5): 128–140

    Google Scholar 

  • Everett H. (1957) The “relative state” formulation of quantum mechanics. Review of Modern Physics 29(3): 454–462

    Article  Google Scholar 

  • Gács, P. (2001). Quantum algorithmic entropy. arXiv:quant-ph/0011046v2.

  • Gal-Or, B. (1983). Cosmology, physics and philosophy. Springer-Verlag 1983. Part II. Lecture IV: The Arrow of Time.

  • Gell-Mann M., Hartle J. B. (1990) Quantum mechanics in the light of quantum cosmology. In: Zurek W. H. (eds) Complexity, entropy and the physics of information. Addisson Wesley Publishing Company, Reading, MA

    Google Scholar 

  • Gibbs J. W. (1902) Elementary principles in statistical mechanics. Yale University Press, New Haven, CT

    Google Scholar 

  • Girhardi G. C., Rimini A., Weber T. (1986) Unified dynamics for microscopic and macroscopic systems. Physical Review C 34(2): 470–491

    Google Scholar 

  • Gold T. (1962) The arrow of time. American Journal of Physics 30: 403–410

    Article  Google Scholar 

  • Griffiths R.J. (1984) Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics 36: 219–234

    Article  Google Scholar 

  • Grinbaum, A. (2004). The Significance of Information in Quantum Theory. Thèse de Doctorat de l’Ecole Polytechnique, Paris.

  • Hawking S. (1985) Arrow of time in cosmology. Physical Review D 32(10): 2489

    Article  Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physics Review (2), 171 (see also (4), 620).

  • Kant, I. (1787). Critique of pure reason. Dover: Philosophical Classics.

  • Lebowitz J.L. (1999) Statistical mechanics: A selective review of two central issues. Review of Modern Physics 71: 346–357

    Article  Google Scholar 

  • Levin, L. A. (1976). Various measures of complexity for finite objects axiomatic description. Soviet Mathematics Doklady, 17, 522, (English translation).

  • Mandelstam L.I., Tamm I. (1945) The uncertainty relation between energy and time in non-relativistic quantum mechanics. Journal of Physics (USSR) 9: 249–254

    Google Scholar 

  • Mc Call, S. (1998). The combining of quantum mechanics and relativity theory. http://scistud.umkc.edu/psa98/papers/mccall.pdf.

  • Mora, C., & Briegel, H. J. (2004). Algorithmic complexity of quantum states. ArXiv:quant-ph/0412172v1 22 Dec 2004.

  • Mora, C., & Briegel, H. J. (2006). Algorithmic complexity and entanglement of quantum states, arXiv:quant-ph/0505200v2.

  • Müller, T. (2001). Branching space-time, modal logic and the counterfactual conditional. http://philsci-archive.pitt.edu.

  • Müller T. (2005) Probability theory and causation: A branching space-times analysis. British Journal for the Philosophy of Science 56: 487–520

    Article  Google Scholar 

  • Nielsen, M. A. (1998). Quantum information theory. PhD Dissertation, University of New Mexico, Albuquerque, New Mexico, USA.

  • Omnès, R. (2001). Probabilities, decohering histories, and the interpretation of quantum mechanics, Lecture Notes in Physics, ed. Bricmont et al., vol. 574, p. 149.

  • Pauli, W. (1926). Handbuch der Physik, Vol 24/1, p. 143.

  • Penrose R. (1989) The Emperor’s new mind. Oxford University Press, Oxford

    Google Scholar 

  • Placek, T. (2003). On objective transition probabilities. http://www.uni-konstanz.de/ppm/gap5workshop/Placek.pdf.

  • Price H. (1994) Cosmology, time’s arrow, and that old double standard. In: Savitt S. (eds) Time’s arrow today. Cambridge University Press, Cambridge

    Google Scholar 

  • Price H. (1996) Time’s arrow and Archimede’s point. Oxford University Press, Oxford

    Google Scholar 

  • Prior A. N. (1967) Past, present and future. Clarendon Press, Oxford

    Google Scholar 

  • Saunders S. (1998) Time, quantum mechanics and probability. Synthese 114: 373–404

    Article  Google Scholar 

  • Savitt S. F. (1995) Time’s arrow today. Cambridge University Press, Cambridge

    Google Scholar 

  • Shannon C. E., Weaver W. (1949) The mathematical theory of communication. Ed. Urbana. University of Illinois Press, Illinois

    Google Scholar 

  • Sharlow, M. F. (2004). What branching spacetime might do for physics. http://www.eskimo.com/~msharlow.

  • Szillard, L. (1929). On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Zeit Physics Vol. 53, 840. English translation in Quantum Theory and Measurement. J. A. & Wheeler, W. H. Zurek (Eds.), Princeton University Press 1983.

  • Vitányi P. (2001) Quantum Kolmogorov complexity based on classical descriptions. IEEE Transactions on Information Theory 47(6): 2464–2479

    Article  Google Scholar 

  • Wallace, D. (2003). Everettian rationality: defending Deusch’s approach to probability in the Everett interpretation. http://users.ox.ac.uk/~mert0130/papers/decshort.pdf.

  • Wheeler J. A. (1990) Information, physics, quantum: The search for links. In: Zurek W. H. (eds) Complexity, entropy and the physics of information. Addisson Wesley Publishing Company, Reading, MA

    Google Scholar 

  • Wheeler J. A., Zurek W. H. (1983) Quantum Theory and measurement. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Zeh H. D. (1989) The physical basis of the direction of time. Springer, Berlin

    Google Scholar 

  • Zurek W. H. (1989) Algorithmic randomness and physical entropy. Physics Review 40(40): 4731–4751

    Article  Google Scholar 

  • Zurek, W. H. (2003). Decoherence, Einselection and the quantum origins of the classical. arXiv:quant-ph/0105127v3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Uzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzan, P. Informational Branching Universe. Found Sci 15, 1–28 (2010). https://doi.org/10.1007/s10699-009-9165-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-009-9165-z

Keywords

Navigation