Skip to main content
Log in

Bridging the Gap Between Argumentation Theory and the Philosophy of Mathematics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We argue that there are mutually beneficial connections to be made between ideas in argumentation theory and the philosophy of mathematics, and that these connections can be suggested via the process of producing computational models of theories in these domains. We discuss Lakatos’s work (Proofs and Refutations, 1976) in which he championed the informal nature of mathematics, and our computational representation of his theory. In particular, we outline our representation of Cauchy’s proof of Euler’s conjecture, in which we use work by Haggith on argumentation structures, and identify connections between these structures and Lakatos’s methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aberdein A. (2005) The uses of argument in mathematics. Argumentation 19(3): 287–301

    Article  Google Scholar 

  • Aberdein A. (2006) Managing informal mathematical knowledge: Techniques from informal logic. In: Borwein J.M., Farmer W.M. (eds) MKM 2006, LNAI 4108. Springer-Verlag, Berlin, pp 208–221

    Google Scholar 

  • Alcolea, B. J. (1998). L’argumentació en matemàtiques. In E. Casaban i Moya (Ed.), XIIè Congrés Valencià de Filosofia (pp. 135–147). Valencià.

  • Burton D. (1985) The history of mathematics. Allyn and Bacon, Boston

    Google Scholar 

  • Cauchy A.L. (1813) Recherches sur les polyèdres. Journal de l’École Polytechnique 9: 68–86

    Google Scholar 

  • Cauchy A.L. (1821) Cours d’analyse de l’école Royale Polytechnique. de Bure, Paris

    Google Scholar 

  • Colton S. (2002) Automated theory formation in pure mathematics. Springer-Verlag, New York

    Google Scholar 

  • Corfield D. (1997) Assaying Lakatos’s philosophy of mathematics. Studies in History and Philosophy of Science 28(1): 99–121

    Article  Google Scholar 

  • Crawshay-Williams R. (1957) Methods of criteria of reasoning: An inquiry into the structure of controversy. Routledge and Kegan Paul, London

    Google Scholar 

  • Crelle A.L. (1826) Lehrbuch der Elemente der Geometrie (Vol. 1, 2). Reimer, Berlin

    Google Scholar 

  • Elvang-Gøransson, M., Krause, P., & Fox, J. (1993). Dialectical reasoning with inconsistent information. In Proceedings of the 9th Conference on Uncertainty in AI (pp. 114–121). San Mateo, CA: Morgan Kaufmann.

  • Ernest P. (1997) The legacy of Lakatos: Reconceptualising the philosophy of mathematics. Philosophia Mathematica 5(3): 116–134

    Google Scholar 

  • Feferman, S. (1978). The logic of mathematical discovery vs. the logical structure of mathematics. In P. D. Asquith & I. Hacking (Eds.), Proceedings of the 1978 Biennial Meeting of the Philosophy of Science Association (Vol. 2. pp. 309–327). East Lansing, MI: Philosophy of Science Association

  • Fourier J. (1808) Mémoire sur la propagation de la chaleur dans les corps solides (Extrait). Nouveau Bulletin des Sciences, par la Société Philomathique de Paris 1: 112–116

    Google Scholar 

  • Goguen, J. (1999). An introduction to algebraic semiotics, with application to user interface design. In C. L. Nehaniv (Ed.), Computation for metaphors, analogy, and agents, LNAI 1562 (pp. 242–291). Berlin: Springer-Verlag

    Chapter  Google Scholar 

  • Haggith, M. (1996). A meta-level argumentation framework for representing and reasoning about disagreement. Ph.D. thesis, Department of Artificial Intelligence, University of Edinburgh.

  • Hallett, M., & Majer, U. (Eds.), (2004). David Hilbert’s lectures on the foundations of geometry: 1891–1902. Berlin: Springer-Verlag.

    Google Scholar 

  • Hardy G H. (1928) Mathematical proof. Mind 38: 11–25

    Google Scholar 

  • Hilbert, D. (1902). The foundations of geometry (English translation by E. J. Townsend). Open Court

  • Jonquières E. (1890) Note sur un point fondamental de la théorie des polyèdres. Comptes Rendus des Séances de l’Académie des Sciences 110: 110–115

    Google Scholar 

  • Lakatos I. (1976) Proofs and refutations. Cambridge University Press, Cambridge

    Google Scholar 

  • Larvor B. (1998) Lakatos: An introduction. Routledge, London

    Google Scholar 

  • Matthiessen L. (1863) Über die Scheinbaren Einschränkungen des Euler’schen Satzes von den Polyedern. Zeitschrift für Mathematik und Physik 8: 1449–1450

    Google Scholar 

  • Meikle, L., & Fleuriot, J. (2003). Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In D. Basin & B. Wolff (Eds.), Proceedings of the 16th International Conference on Theorem Proving in Higher Order Logics, LNCS 2758 (pp. 319–334). Berlin: Springer-Verlag.

  • Naess A. (1953) Interpretation and preciseness: A contribution to the theory of communication. Skrifter utgitt ar der norske videnskaps academie, Oslo

    Google Scholar 

  • Naess, A. (1966). Communication and argument: Elements of applied semantics. London: Allen and Unwin. (Translation of En del elementaere logiske emner. Universitetsforlaget, Oslo, 1947).

  • Pease, A. (2007). A computational model of Lakatos-style reasoning. Ph.D. thesis, School of Informatics, University of Edinburgh. http://hdl.handle.net/1842/2113.

  • Pease, A., Colton, S., Smaill, A., & Lee, J. (2004). A model of Lakatos’s philosophy of mathematics. Proceedings of Computing and Philosophy (ECAP).

  • Pedemonte, B. (2000). Some cognitive aspects of the relationship between argumentation and proof in mathematics. In M. van den Heuvel-Panhuizen (Ed.), 25th Conference of the International Group for the Psychology of Mathematics Education. Utrecht.

  • Pieri M. (1895) Sui principi che reggiono la geometria di posizione. Atti della Reale Accademia delle scienze di Torino 30: 54–108

    Google Scholar 

  • Pieri M. (1897–98) I principii della geometria di posizione composti in sistema logico deduttivo. Memorie della Reale Accademia delle Scienze di Torino 48(2): 1–62

    Google Scholar 

  • Pollock J. (1970) The structure of epistemic justification. In: Rescher N. (eds) Studies in the theory of knowledge. American Philosophical Quarterly Monograph Series 4. Blackwell, Oxford, pp 62–78

    Google Scholar 

  • Pollock J. (1995) Cognitive carpentry. The MIT press, Cambridge, MA

    Google Scholar 

  • Polya G. (1945) How to solve it. Princeton University Press, Princeton NJ

    Google Scholar 

  • Polya G. (1954) Mathematics and plausible reasoning: Vol. 1, Induction and analogy in mathematics. Princeton University Press, Princeton NJ

    Google Scholar 

  • Popper K.R. (1959) The logic of scientific discovery. Basic Books, New York

    Google Scholar 

  • Reed C., Rowe G. (2005) Translating Toulmin diagrams: Theory neutrality in argument representation. Argumentation 19(3): 267–286

    Article  Google Scholar 

  • Roth R.L. (2001) A history of Lagrange’s theorem on groups. Mathematics Magazine 74(1): 99–108

    Article  Google Scholar 

  • Russell B. (1971) Logic and knowledge: Essays 1901–1950. George Allen and Unwin, London

    Google Scholar 

  • Sartor, G. (1993). A simple computational model for nonmonotonic and adversarial legal reasoning. In Proceedings of the Fourth International Conference on Artificial Intelligence and Law. Amsterdam: ACM.

  • Toulmin S. (1958) The uses of argument. Cambridge University Press, Cambridge

    Google Scholar 

  • Toulmin S., Rieke R., Janik A. (1979) An introduction to reasoning. Macmillan, London

    Google Scholar 

  • Walton D. (2006) Fundamentals of critical argumentation. Cambridge University Press, Cambridge

    Google Scholar 

  • Wilder R.L. (1944) The nature of mathematical proof. The American Mathematical Monthly 51(6): 309–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Pease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pease, A., Smaill, A., Colton, S. et al. Bridging the Gap Between Argumentation Theory and the Philosophy of Mathematics. Found Sci 14, 111–135 (2009). https://doi.org/10.1007/s10699-008-9150-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-008-9150-y

Keywords

Navigation