Skip to main content
Log in

Oxidation number: issues of its determination and range

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

The paper is aimed at the issues of oxidation state determination and limiting values. The possibility of existence of compounds containing an atom with the oxidation number beyond the current common values, i.e., below −IV and above +VIII are discussed. Three principal modes of preparation of compounds with the oxidation number exceeding VIII, electrochemical anodic oxidation, photoionization, and nuclear β-decay, are evaluated. Failure to prepare compounds containing an atom with the oxidation number below −IV is rationalized. The paper provides an opinion on uncertainties in oxidation state determination in three kinds of compounds: binary compounds, nitrosyl complexes, and compounds containing mutually bonded atoms of the same element. The questions are discussed from the viewpoint of correlation of “man-made” quantities and objective, experimentally obtainable data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson, K., Nyberg, M., Ogasawara, H., Nordlund, D., Kendelewicz, T., Doyle, C.S., Brown, G.E., Pettersson, L.G.M., Nilsson, A.: Experimental and theoretical characterization of the structure of defects at pyrite FeS2(100) surface. Phys. Rev. B 70, 195404 (2004)

    Article  Google Scholar 

  • Atkins, P.W., Jones, L.: Chemical Principles, The Quest for Insight, 3rd edn, p. 41. W.H. Freeman and Company, New York (2005)

    Google Scholar 

  • Bartlett, N.: Xenon Hexafluoroplatinate(V), Xe+[PtF6]. Proc. Chem. Soc. 218 (1962)

  • Berman, M., Beard, G.B.: Coulomb fragmentation of molecules following beta emission. Phys. Rev. Lett. 22, 753–755 (1969)

    Article  Google Scholar 

  • Chusuei, Ch.C., Goodman, W.: X-Ray photoelectron spectroscopy, pp 921–938, in encyclopedia of physical science and technology, analytical chemistry, vol. 3. AP, San Diego (2001)

    Google Scholar 

  • de Puy, C.H., Garyev, R., Hankin, J., Davico, G.E.: Formation of BH6 + in the gas phase. J. Am. Chem. Soc. 119, 427–428 (1997)

    Article  Google Scholar 

  • Dementev, A.I., Kuznetsov, M.L., Kiselev, Y.M.: On the extremal oxidation states of heavy 5d elements. Russ. J. Inorg. Chem. 42, 1052–1057 (1997)

    Google Scholar 

  • Ghosh, P.K.: Introduction to Photoelectron Spectroscopy, p. 170. Wiley, New York (1983)

    Google Scholar 

  • Grapperhaus, C.A., Mienert, B., Bill, E., Weyhermüller, T., Wieghardt, K.: Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures. Inorg. Chem. 39, 5306–5317 (2000)

    Article  Google Scholar 

  • Hollas, J.M.: Modern Spectroscopy, 4th edn, p. 320. Wiley, New York (2004)

    Google Scholar 

  • Jörgensen, C.K.: Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electron energy. Coord. Chem. Rev. 1, 164–178 (1966)

    Article  Google Scholar 

  • Kalemos, A., Mavridis, A.: Electronic structure and bonding of ozone. J. Chem. Phys. 129, 054312 (2008)

    Article  Google Scholar 

  • Kiselev, Y.M., Tretiakov, Y.D.: The problem of oxidation state stabilisation and some regularities of a Periodic system of the elements. Russ. Chem. Rev. 68, 365–379 (1999)

    Article  Google Scholar 

  • Kiselev, Y.M., Kopelev, M.S., Spicyn, V.I., Martynenko, L.I.: Octavalent iron, Dokl. Akad. Nauk SSSR 292, 621–628 (1987)

    Google Scholar 

  • Lyubimova, O., Sizova, O.V., Loschen, C., Frenking, G.: The nature of the metal-nitric oxide bond in the [M(CN)5(NO)]q (M = Cr, Mn, Fe, Ru, Os, and Co) and trans-[Ru(NH3)4L(NO)]q (L = pyrazine, pyridine, N2, H2O, Cl, CN, NO2 ) complexes: A bond-energy decomposition analysis. J. Mol. Str. (Theochem) 865, 28–35 (2008)

    Article  Google Scholar 

  • Marcus, R.: Perspective on the M in RRKM theory. Spectrum 16(3), 4–21 (2003)

    Google Scholar 

  • Nashikida, S., Ikeda, S.: Chemical shift of sulphur KLL auger electron energies in its compounds. Bull. Chem. Soc. Japan 51, 1996–2001 (1978)

    Article  Google Scholar 

  • Nefedov, V.I., Sinizyn, N.M., Salyn, J.V., Bayer, L.: Determination of charge of nitrosogroup in complexes by X-ray electronic methods. Russ. Coord. Chem. 1, 1618–1624 (1975)

    Google Scholar 

  • Nesmejanov, A.N.: Radiochimija, p. 191. Chimija, Moskva (1972)

    Google Scholar 

  • Pakiari, A.H., Nazari, F.: New suggestion for electronic structure of the ground state of ozone. J. Mol. Struct. (Theochem) 640, 109–115 (2003)

    Article  Google Scholar 

  • Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry. Cornell University Press, New York (1947)

    Google Scholar 

  • Pettersson, L., Bäckström, M., Brammer, R., Wassdahl, N., Rubensson, J.-E., Nordgren, J.: Nitrogen and oxygen K emission spectra of nitrous oxide. J. Phys. 17B, L279–L282 (1984)

    Google Scholar 

  • Rother, P., Wagner, F., Zahn, U.: Chemical consequences of the 193Os(β)193Ir decay in osmium compounds studied by the Mossbauer method. Radiochim. Acta 11, 203–210 (1969)

    Google Scholar 

  • Sahrani, F.K., Aziz, M.A., Ibrahim, Z., Yahya, A.: Surface analysis of marine sulphate-reducing bacteria exopolymers on steel during biocorrosion using X-ray photoelectron spectroscopy. Sains Malaysiana 37, 131–135 (2008)

    Google Scholar 

  • Seel, M., Kunz, B.A.: Band structure and electronic properties of lithium azide (LiN3). Int. J. Quantum Chem. 39, 149–157 (1991)

    Article  Google Scholar 

  • Šima, J.: Photochemical reactions of Iron(III) complexes: classification, mechanisms, and application. In: Sanchez, A., Guttierez, S.J. (eds.) Photochemistry Research Progress, pp. 103–160. Nova Science, New York (2008)

    Google Scholar 

  • Su, G.L., Ning, C.G., Deng, J.K., Ren, X.G., Zhang, S.F., Huang, Y.R., Yang, T.C., Wang, F.: Direct observations of the chemical shift and electron momentum distributions of core shell in N2O. Chem. Phys. Lett. 422, 308–312 (2006)

    Article  Google Scholar 

  • Szacilowski, K., Macyk, W., Drzewiecka-Matuszek, A., Brindell, M., Stochel, G.: Bioinorganic photochemistry: frontiers and mechanisms. Chem. Rev. 105, 2647–2694 (2005)

    Article  Google Scholar 

  • Urch, D.S.: PAX (photoelectron and X-ray) spectroscopy and the electronic structure of moleculs, complexes, and solids. Arab. J. Sci. Eng. 13, 211–225 (1988)

    Google Scholar 

  • Von Niessen, W., Kraemer, W.P., Diercksen, G.H.F.: Large scale ab initio calculations and the assignment of the photoelectron spectrum. Chem. Phys. Lett. 63, 65–68 (1979)

    Article  Google Scholar 

  • Waskowska, A., Gerward, L., Olsen, J.S., Steenstrup, S., Talik, E.: CuMn2O4: properties and the high-pressure induced Jahn-Teller phase transition. J. Phys. Condens. Matter 13, 2549–2562 (2001)

    Article  Google Scholar 

  • Xenides, D., Maroulis, G.: How does protonation affect the electron density of ozone? Mol. Phys. 100, 1057–1059 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the VEGA grant No. 1/0353/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Šima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šima, J. Oxidation number: issues of its determination and range. Found Chem 11, 135–143 (2009). https://doi.org/10.1007/s10698-009-9071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-009-9071-z

Keywords

Navigation