Skip to main content

Advertisement

Log in

Planning of waste electrical and electronic equipment (WEEE) recycling facilities: MILP modelling and case study investigation

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

Waste electrical and electronic equipment (WEEE) consist of many different substances some of which contain hazardous components and valuable materials. The recovery of WEEE plays a key role on environmental sustainability because it minimizes the negative effects of hazardous materials and helps the efficient use of world’s limited resources. Recovery strategies enable companies to collect reusable components and to recycle the material content of WEEE by using operations like sorting, disassembly and bulk recycling. Usually companies associated with municipals collect WEEE from end-users and/or collection points. Then they sell these items to WEEE recycling facilities through bidding. For recycling facilities, it is important to generate the best operational level decisions to receive and handle WEEE. This study contributes to the fulfillment of this need by presenting a mixed integer linear programming model to determine the maximum bid price offer while determining the best operation planning strategies. In order to demonstrate the potential of the proposed model, a real life case study along with several scenarios is studied. The findings of the case study indicate that the model has the potential to enable the decision maker to come with stronger decisions related to both bidding process and operational strategies of the facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdessalem M, Hadj-Alouane AB, Riopel D (2012) Decision modelling of reverse logistics systems: selection of recovery operations for end-of-life products. Int J Logist Syst Manag 13:139–161. doi:10.1504/IJLSM.2012.048933

    Article  Google Scholar 

  • Amoyaw-Osei Y, Agyekum OO, Pwamang JA, Mueller E, Fasko R, Schluep M (2011) Ghana e-waste country assessment. Green Advocacy Ghana & Empa Switzerland, Ghana

    Google Scholar 

  • Anghinolfi D, Paolucci M, Robba M, Taramasso AC (2013) A dynamic optimization model for solid waste recycling. Waste Manag 33:287–296. doi:10.1016/j.wasman.2012.10.006

    Article  Google Scholar 

  • Bing X, Bloemhof-Ruwaard J, Vorst JAJ (2014) Sustainable reverse logistics network design for household plastic waste. Flex Serv Manuf 26:119–142. doi:10.1007/s10696-012-9149-0

    Article  Google Scholar 

  • Brindley F, Angel J (2008) Tipping point: Australia’s E-waste Crisis. Total Environment Centre and Environment Victoria, Sydney, Australia

    Google Scholar 

  • Cobbing M (2008) Toxic tech: not in our backyard: uncovering the hidden flows of e-waste. Greenpeace International, Amsterdam

    Google Scholar 

  • Cucchiella F, D’Adamo I, Gastaldi M, Koh SCL (2014) Implementation of a real option in a sustainable supply chain: an empirical study of alkaline battery recycling. Int J Syst Sci 45:1268–1282. doi:10.1080/00207721.2012.761458

    Article  Google Scholar 

  • Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99:243–263

    Article  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    Article  Google Scholar 

  • Dalrymple I, Wright N, Kellner R, Bains N, Geraghty K, Goosey M, Lightfoot L (2007) An integrated approach to electronic waste (WEEE) recycling. Circuit World 33:52–58

    Article  Google Scholar 

  • DEFRA (2007) Trial to establish waste electrical and electronic equipment (WEEE) protocols. Department for Environment, Food and Rural Affairs, London

    Google Scholar 

  • Dhouib D (2014) An extension of MACBETH method for a fuzzy environment to analyze alternatives in reverse logistics for automobile tire wastes. Omega 42:25–32. doi:10.1016/j.omega.2013.02.003

    Article  Google Scholar 

  • EPA (2009) Municipal solid waste in the United States: 2009 facts and figures. United States Environmental Protection Agency: EPA 530-R-510-012

  • EU (2002) Directive 2002/96/EC of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE)—joint declaration of the European parliament. The council and the commission relating to article 9. Off J L037:0024–0039

    Google Scholar 

  • Guide VDR Jr (2000) Production planning and control for remanufacturing: industry practice and research needs. J Oper Manag 18:467–483. doi:10.1016/S0272-6963(00)00034-6

    Article  Google Scholar 

  • Gungor A, Gupta SM (1998) Disassembly sequence planning for products with defective parts in product recovery. Comput Ind Eng 35:161–164. doi:10.1016/S0360-8352(98)00047-3

    Article  Google Scholar 

  • Gungor A, Gupta SM (1999) Issues in environmentally conscious manufacturing and product recovery: a survey. Comput Ind Eng 36:811–853

    Article  Google Scholar 

  • Güngör A, Gupta SM (2002) Disassembly line in product recovery. Int J Prod Res 40:2569–2589. doi:10.1080/00207540210135622

    Article  MATH  Google Scholar 

  • Guo S, Aydin G, Souza GC (2013) Dismantle or remanufacture? Eur J Oper Res 233:580–583. doi:10.1016/j.ejor.2013.09.042

    Article  MathSciNet  Google Scholar 

  • He W, Li G, Ma X, Wang H, Huang J, Xu M, Huang C (2006) WEEE recovery strategies and the WEEE treatment status in China. J Hazard Mater 136:502–512

    Article  Google Scholar 

  • Huscroft JR, Hazen BT, Hall D, Skipper JB, Hanna JB (2013) Reverse logistics: past research, current management issues, and future directions. Int J Logist Manag 24:304–327. doi:10.1108/IJLM-04-2012-0024

    Article  Google Scholar 

  • Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manage 91:563–591

    Article  Google Scholar 

  • Ilgin MA, Gupta SM (2012) Remanufacturing modeling and analysis. CRC Press, Florida

    Book  Google Scholar 

  • Kalayci C, Polat O, Gupta SM (2014) A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem. Ann Oper Res. doi:10.1007/s10479-014-1641-3

    MATH  Google Scholar 

  • Kang H-Y, Schoenung JM (2005) Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl 45:368–400

    Article  Google Scholar 

  • Kannan G, Sasikumar P, Devika K (2010) A genetic algorithm approach for solving a closed loop supply chain model: a case of battery recycling. Appl Math Model 34:655–670. doi:10.1016/j.apm.2009.06.021

    Article  MathSciNet  MATH  Google Scholar 

  • Kapetanopoulou P, Tagaras G (2009) An empirical investigation of value-added product recovery activities in SMEs using multiple case studies of OEMs and independent remanufacturers. Flex Serv Manuf 21:92–113. doi:10.1007/s10696-010-9063-2

    Article  Google Scholar 

  • Karakayali I, Emir-Farinas H, Akcali E (2007) An analysis of decentralized collection and processing of end-of-life products. J Oper Manag 25:1161–1183. doi:10.1016/j.jom.2007.01.017

    Article  Google Scholar 

  • Krikke HR, van Harten A, Schuur PC (1998) On a medium-term product recovery and disposal strategy for durable assembly products. Int J Prod Res 36:111–140. doi:10.1080/002075498193967

    Article  MATH  Google Scholar 

  • Krikke HR, van Harten A, Schuur PC (1999) Business case Roteb: recovery strategies for monitors. Comput Ind Eng 36:739–757

    Article  Google Scholar 

  • Minciardi R, Paolucci M, Robba M, Sacile R (2008) Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities. Waste Manag 28:2202–2212. doi:10.1016/j.wasman.2007.10.003

    Article  Google Scholar 

  • Moore KE, Gungor A, Gupta SM (1998) A Petri net approach to disassembly process planning. Comput Ind Eng 35:165–168

    Article  Google Scholar 

  • Pati RK, Vrat P, Kumar P (2008) A goal programming model for paper recycling system. Omega 36:405–417

    Article  Google Scholar 

  • Ploog M, Spengler T (2002) Integrated planning of electronic scrap disassembly and bulk recycling. IEEE Int Symp Electron Environ. doi:10.1109/isee.2002.1003277

    Google Scholar 

  • Quariguasi Frota Neto J, Walther G, Bloemhof J, van Nunen JAEE, Spengler T (2009) A methodology for assessing eco-efficiency in logistics networks. Eur J Oper Res 193:670–682. doi:10.1016/j.ejor.2007.06.056

    Article  MATH  Google Scholar 

  • Quariguasi Frota Neto J, Walther G, Bloemhof J, van Nunen JAEE, Spengler T (2010) From closed-loop to sustainable supply chains: the WEEE case. Int J Prod Res 48:4463–4481. doi:10.1080/00207540902906151

    Article  MATH  Google Scholar 

  • Rahimifard S, Abu Bakar MS, Williams DJ (2009) Recycling process planning for the end-of-life management of waste from electrical and electronic equipment. CIRP Ann Manuf Technol 58:5–8

    Article  Google Scholar 

  • Rahman S, Subramanian N (2012) Factors for implementing end-of-life computer recycling operations in reverse supply chains. Int J Prod Econ 140:239–248. doi:10.1016/j.ijpe.2011.07.019

    Article  Google Scholar 

  • Renteria A, Alvarez E (2012) Optimizing the recycling process of electronic appliances: new trends and applications. In: Golinska P, Romano CA (eds) Environmental issues in supply chain management. Springer, Berlin, pp 91–105. doi:10.1007/978-3-642-23562-7_6

    Chapter  Google Scholar 

  • Renteria A, Alvarez E, Perez J, del Pozo D (2010) A methodology to optimize the recycling process of WEEE: case of television sets and monitors. Int J Adv Manuf Technol 54:789–800

    Article  Google Scholar 

  • Rios PJ, Stuart JA (2004) Scheduling selective disassembly for plastics recovery in an Electronics Recycling Center. IEEE Trans Electron Packag Manuf 27:187–197

    Article  Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191

    Article  Google Scholar 

  • Ruiz-Torres AJ, Ablanedo-Rosas JH, Mukhopadhyay S (2013) Supplier allocation model for textile recycling operations. Int J Logist Syst Manag 15:108–124

    Article  Google Scholar 

  • Schweiger K, Sahamie R (2013) A hybrid Tabu Search approach for the design of a paper recycling network. Transp Res Part E Logist Transp Rev 50:98–119. doi:10.1016/j.tre.2012.10.006

    Article  Google Scholar 

  • Shih L-H, Lee S-C (2007) Optimizing disassembly and recycling process for EOL LCD-type products: a Heuristic method. IEEE Trans Electron Packag Manuf 30:213–220

    Article  Google Scholar 

  • Simic V, Dimitrijevic B (2012a) Modelling production processes in a vehicle recycling plant. Waste Manage Res 30:940–948. doi:10.1177/0734242X12454695

    Article  Google Scholar 

  • Simic V, Dimitrijevic B (2012b) Production planning for vehicle recycling factories in the EU legislative and global business environments. Resour Conserv Recycl 60:78–88. doi:10.1016/j.resconrec.2011.11.012

    Article  Google Scholar 

  • Simic V, Dimitrijevic B (2013) Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty. Resour Conserv Recycl 73:197–210. doi:10.1016/j.resconrec.2013.02.012

    Article  Google Scholar 

  • Sodhi MS, Reimer B (2001) Models for recycling electronics end-of-life products. OR Spectrum 23:97–115. doi:10.1007/PL00013347

    Article  MATH  Google Scholar 

  • Sodhi MS, Young J, Knight WA (1999) Modelling material separation processes in bulk recycling. Int J Prod Res 37:2239–2252. doi:10.1080/002075499190743

    Article  MATH  Google Scholar 

  • Spengler T, Ploog M, Schröter M (2003) Integrated planning of acquisition, disassembly and bulk recycling: a case study on electronic scrap recovery. OR Spectrum 25:413–442. doi:10.1007/s00291-003-0119-5

    MATH  Google Scholar 

  • Stindt D, Sahamie R (2014) Review of research on closed loop supply chain management in the process industry. Flex Serv Manuf 26:268–293. doi:10.1007/s10696-012-9137-4

    Article  Google Scholar 

  • Stuart JA, Christina V (2003) New metrics and scheduling rules for disassembly and bulk recycling. IEEE Trans Electron Packag Manuf 26:133–140

    Article  Google Scholar 

  • Teunter RH (2006) Determining optimal disassembly and recovery strategies. Omega 34:533–537

    Article  Google Scholar 

  • Thierry M, Salomon M, Nunen JV, Wassenhove LV (1995) Strategic issues in product recovery management. Calif Manag Rev 37:114–135

    Article  Google Scholar 

  • UNEP (2006) Call for global action on E-waste. United Nations Environment Programme, Nairobi

    Google Scholar 

  • Walther G, Steinborn J, Spengler T, Luger T, Herrmann C (2010) Implementation of the WEEE-directive—economic effects and improvement potentials for reuse and recycling in Germany. Int J Adv Manuf Technol 47:461–474. doi:10.1007/s00170-009-2243-0

    Article  Google Scholar 

  • Webster S, Mitra S (2007) Competitive strategy in remanufacturing and the impact of take-back laws. J Oper Manag 25:1123–1140. doi:10.1016/j.jom.2007.01.014

    Article  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458

    Article  Google Scholar 

  • Williams JAS (2006) A review of electronics demanufacturing processes. Resour Conserv Recycl 47:195–208

    Article  Google Scholar 

  • Williams JAS, Wongweragiat S, Qu X, McGlinch JB, Bonawi-tan W, Choi JK, Schiff J (2007) An automotive bulk recycling planning model. Eur J Oper Res 177:969–981

    Article  MATH  Google Scholar 

  • Wu CC, Chang NB (2003) Global strategy for optimizing textile dyeing manufacturing process via GA-based grey nonlinear integer programming. Comput Chem Eng 27:833–854. doi:10.1016/S0098-1354(02)00270-3

    Article  Google Scholar 

  • Ziout A, Azab A, Atwan M (2014) A holistic approach for decision on selection of end-of-life products recovery options. J Clean Prod 65:497–516. doi:10.1016/j.jclepro.2013.10.001

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the anonymous referees and the Editor for several suggestions, which substantially improved the paper. This research is partially funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 111M428. The authors wish to acknowledge this valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askiner Gungor.

Appendix

Appendix

See Tables 5, 6, 7 and 8.

Table 5 Data for each WEEE type in the current situation
Table 6 Data for evaluating the current situation
Table 7 Data for each WEEE type in the proposed situation
Table 8 Data for evaluating the proposed situation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capraz, O., Polat, O. & Gungor, A. Planning of waste electrical and electronic equipment (WEEE) recycling facilities: MILP modelling and case study investigation. Flex Serv Manuf J 27, 479–508 (2015). https://doi.org/10.1007/s10696-015-9217-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-015-9217-3

Keywords

Navigation